
Join-Operatoren für die
bi-abduktive Analyse von

Low-Level-Code

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Lukas Rysavy, BSc
Matrikelnummer 11809637

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Mitwirkung: Univ.Ass. Florian Sextl, MSc

Wien, 2024-04-03
Lukas Rysavy Florian Zuleger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Join Operators for Bi-Abductive
Analysis of Low-Level Code

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Lukas Rysavy, BSc
Registration Number 11809637

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Assistance: Univ.Ass. Florian Sextl, MSc

Vienna, 2024-04-03
Lukas Rysavy Florian Zuleger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Lukas Rysavy, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2024-04-03
Lukas Rysavy

v

Danksagung

Zuerst möchte ich mich bei meinem Betreuer, Prof. Florian Zuleger, für die mir von
ihm zur Verfügung gestellten Freiheiten, Dinge selbst zu probieren, aber auch für den
wertvollen Input bei Unklarheiten, bedanken. Weiters möchte ich mich bei meinem
Assistenzbetreuer Florian Sextl für immer zeitnahe Antworten auf zahlreiche Fragen und
damit für die Klärung von vielen Problemen bedanken.

Außerdem möchte ich Dank an das Broom-Team der Technischen Universität in Brno
ausrichten, welches sehr hilfreich beim Verstehen des Codes von Broom war; speziell sind
hier Adam Rogalewicz und Veronika Šoková hervorzuheben.

Zuletzt möchte ich Danke an meinen besten Freund und Kollegen Manuel Reinsperger
sagen, welcher mir meine ganze Zeit an der Universität beiseite gestanden ist und beim
Korrekturlesen dieser Arbeit geholfen hat.

vii

Acknowledgements

First, I want to thank my supervisor Prof. Florian Zuleger for giving me the freedom to
try things by myself while giving valuable input and guiding me in unclear situations.
Furthermore, I want to thank my assistant supervisor Florian Sextl for always responding
to any questions I had in minimal time and like that resolving many uncertainties I
encountered.

In addition, I want to thank the Broom team from the Brno University of Technology,
especially Adam Rogalewicz and Veronika Šoková, for providing remote help on the inner
workings of Broom.

Lastly, I want to thank my best friend and colleague Manuel Reinsperger for being there
with me throughout all my years in university and proofreading this thesis.

ix

Kurzfassung

Statische Codeanalyse spielt eine wichtige Rolle bei der Sicherstellung von Korrektheit
bestimmter Programme oder von Segmenten davon. Bewerkstelligt wird dies oft mittels
abstrakter Interpretation, bei der Verträge, bestehend aus Vor- und Nachbedingungen, für
Codeblöcke generiert werden. Eine in diesem Kontext offene Frage ist, wie Situationen, in
denen zwei Programmpfade aufeinandertreffen (häufig am Ende von Fallunterscheidungen
oder Schleifen), und in denen mehrere solche Verträge verfügbar sind, gehandhabt werden
sollen. So ist diese Frage auch in Broom, einem Werkzeug für die statische Analyse speziell
von systemnahem Code, welcher mit verketteten Datenstrukturen arbeitet, bislang
unbeantwortet.

Aus diesem Grund wird ein Algorithmus, welcher es ermöglicht, von Broom erzeugte
Formeln zu vereinen, vorgestellt, und seine Auswirkungen auf die Qualität der Ergebnisse
sowie die Effizienz des Analyseprozesses werden durch einen Vergleich von Verträgen,
welche für repräsentative Beispiele mit und ohne dieses Join-Algorithmus generiert werden,
untersucht. Mit den Ergebnissen dieser Untersuchungen werden schlussendlich Parameter
für den Algorithmus gefunden, welche zu möglichst guten Resultaten führen.

xi

Abstract

Static code analysis plays an important role in ensuring the correctness of program
segments or entire programs, often performed using abstract interpretation to generate
contracts consisting of pre- and postconditions for code blocks. Here, an ongoing question
is how to handle situations where two program paths merge (commonly at the end of
conditional branches or loops) and several such contracts are available. Specifically, this
question has previously gone unanswered in Broom, a static analysis tool that specializes
in analyzing low-level code that operates on linked pointer segments.

For that reason, an algorithm capable of joining the formulas generated by Broom
is introduced, and its effects on the quality of generated results as well as on the
efficiency of the analysis process are studied by comparing contracts generated for a set
of representative examples while using this join algorithm to ones generated without.
With the conclusions of this evaluation, the parameters for the proposed algorithm are
adjusted to get the best possible results.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem Setting . 1
1.2 Problem Statement . 2
1.3 State-of-the-Art . 3
1.4 Methodology . 4
1.5 Contributions . 4

2 Related work 7

3 Broom 11
3.1 Bi-Abduction . 11
3.2 Separation logic . 13
3.3 List abstraction . 13
3.4 Formula structure . 15
3.5 Low-level memory operations . 18
3.6 Join points . 19

4 Joining States 21
4.1 Problem description . 21
4.2 Approaches to joining . 22
4.3 Joining states with heap predicates . 24

5 The Join Algorithm 29
5.1 Selection of pairs to join . 29
5.2 Joining two formulas . 30
5.3 Validating output . 55
5.4 Entailment . 55

xv

6 Implementation 57

7 Considered Variations 59
7.1 Joining pointers with null . 59
7.2 Joining list segments with null . 59
7.3 Abstracting on pointer + null . 60
7.4 Shared expressions in abstraction . 60
7.5 Only allowing correct joins . 60

8 Evaluation 61
8.1 Benchmark suite . 61
8.2 Number of join points . 62
8.3 Runtime . 62
8.4 Result quality . 65
8.5 Notable differences . 66

9 Conclusion 69

10 Future Work 71

List of Figures 73

List of Tables 75

List of Algorithms 77

Bibliography 81

CHAPTER 1
Introduction

To automatically prove certain properties of programs such as them being error-free
or whether some assertions hold after their execution, static analysis is employed in
many cases, often executing the program symbolically to find generalized pre- and
postconditions for code blocks without the need to perform all of the calculations on
concrete values.

This approach is, among many others, taken by the project Broom[HPR+22], which this
thesis is based upon. Broom is a static analysis tool for C programs that especially
aims to support low-level memory operations such as pointer arithmetics or memory
reinterpretation.

1.1 Problem Setting
When symbolically executing a program, Broom adds the pre- and postcondition of the
currently executed statement to the list of missing preconditions and the current state’s
postcondition, respectively, by solving the bi-abduction problem. The bi-abduction
question addresses the problem of finding the antiframe and the frame of an entailment:
The antiframe consists of a formula that needs to be added to the left side of the
entailment to make it valid, while the frame is any state that is unchanged over the course
of the entailment and can be added on its right side. Naturally, the antiframe to be
found should be as small as possible while the frame should contain as much information
as possible.

Using the answers to this question, the precondition and postcondition of a function
can be incrementally built up statement by statement. Broom traverses functions along
the call tree, starting from the very bottom and working its way upwards. This way,
contracts for function call statements are available at the time they are analyzed, and
they can be treated just like any other instruction. For this reason, Broom does not

1

1. Introduction

support recursive function calls. On the other hand, this also enables the possibility of
analyzing open programs, ie. programs where not all parts are available at the time of
analysis (e.g. shared libraries that cannot be executed on their own but rather serve as a
pluggable part for other programs).

To represent operations on the heap of a program, standard Hoare logic is extended
with two operators from separation logic[Rey02]. The star operator * ensures that
two clauses lie in different parts of the heap and thus deals with the aliasing question.
The points-to operator 7→, on the other hand, is a predicate indicating a pointer to a
specific address in memory.

When analyzing non-linear programs containing e.g. loops, abstraction is of utmost
importance to speed up or even enable the termination of the analysis altogether. Since
linked pointer segments play a central role in Broom, it seems natural to make them
the unit of abstraction. Therefore, Broom adds predicates for singly- and doubly-linked
pointer segments, containing information about the segment’s start and end as well
as generalized information about the individual links, including how to get from one
link to the next. These predicates are the result of an abstraction procedure applied
at join points (e.g. the end of a list) that heuristically tries to find pointer chains with
compatible elements.

1.2 Problem Statement

By default, loop termination in Broom is achieved by opportunistically abstracting linked
segments and checking for entailment between states, pruning any that are overruled
by one or more others. This is based on the assumption that after a certain number of
iterations, no new information will be added to the pre- and postcondition formulas that
cannot be collapsed into any of the existing segments, in which case a fixed point has
been reached.

For example, take the function in Listing 1.1, with the discovered postconditions in the
comments: In the beginning, only the fact that the list variable has not changed is
known (ie. equivalent to its anchor, the value at the start of the function). Then, its
inequivalence to NULL in pre- and postcondition is discovered, and for each iteration,
an additional pointer predicate is added (lines 11 and 12). This is abstracted into a
singly-linked segment predicate (Slseg, line 14) which entails both of the previous states
and is stable through the next iteration. Preconditions are found similarly, with the list
variable replaced by a logical one.

For many cases, this works just as expected and reaches a stable state after just a few loop
iterations (the default limit in Broom is five iterations before the analysis surrenders).
However, there are also quite a few examples where this needs more iterations than
technically necessary with a “perfect” algorithm and where the analysis therefore takes
more time, or where no result can be found at all after a sensible number of loop iterations.
Certainly, there is room for improvement in this part of the analysis process.

2

1.3. State-of-the-Art

Listing 1.1: Example linked list loop
1 s t r u c t l i n k e d_ l i s t {
2 s t r u c t l i n k e d_ l i s t ∗ next ;
3 . . .
4 }
5
6 s t r u c t l i n k e d_ l i s t ∗ l i n k ed_ l i s t_ l a s t (s t r u c t l i n k e d_ l i s t ∗ l i s t) {
7 // { l i s t = l i s t_anch }
8 whi l e (l i s t != NULL) {
9 // { l i s t = l i s t_anch & l i s t != NULL }

10 l i s t = l i s t −>next ;
11 // { l i s t_anch −(8)−> l i s t & l i s t_anch != NULL }
12 // { l i s t_anch −(8)−>%l1 ∗ %l1 −(8)−> l i s t & l i s t_anch != NULL }
13 }
14 // { S l s eg (l i s t_anch , l i s t) & l i s t_anch != NULL & l i s t = NULL }
15 return l i s t ;
16 }

Therefore, there is a demand for a join operator that takes several states (each with a pre-
and a postcondition) and either joins them into a single, more generic version or suggests
that such a join is not possible without a significant loss of information. In addition to
finding such an operator that can improve analysis results in such suboptimal cases and
find contracts where this might have been not possible previously, an evaluation of the
said operator is desired, showing cases where such an improvement can be achieved and
cases where this is not possible, possibly together with explanations for both.

1.3 State-of-the-Art
The problem at hand has been solved for numerous analyzers in various ways, each
solution with its advantages and drawbacks. Many introduce some kind of normalized
form for their formulas that can more easily be compared and parts matched up with each
other; for example, the approach presented by Li et al.[LBCR17] transforms concrete
memory graphs into so-called silhouettes represented by regular expressions, which can
then simply be generalized to serve as a summary of several of the states.

A project that deserves special acknowledgment is Predator[DPV11, DPV13, DPV14,
HKP+16], one of the main inspirations for Broom. In Predator, states are represented
using Abstract Memory Graphs, which are built via symbolic execution. Predator includes
a very powerful join operator that can join such graphs, with a scope even larger than that
of the operator introduced in this thesis: Not only does the join prune superfluous states,
but is also the only component in the system that performs abstraction on the states
and is even responsible for finding entailment relations. In addition to the differing state

3

1. Introduction

structure, one major difference between Predator and Broom is that Predator can only
handle closed programs, ie. programs where code is available for all relevant functions.

1.4 Methodology
To solve this problem in the context of the Broom analyzer, a join operator has been
implemented in OCaml and incorporated into the system. The implementation and its
design decisions were guided by the result of analyses of real-world code examples: The
performance of the analysis was evaluated for various use cases, and rules on how to join
which states were derived. In addition, the behavior of the join process of other projects
such as Predator has been analyzed and used as an inspiration for many parts of the
implementation presented here.

The finished implementation was experimentally evaluated on a rather comprehensive
test set of relevant code pieces. Here, multiple factors such as the analysis runtime and
the quality of its results were compared. For mismatches (e.g. cases where more contracts
could be generated or the runtime differed significantly), the individual join operations
(with their input and output states) were analyzed by hand, finding any changes that
were introduced to the resulting state and how this affected future iterations of the
symbolic execution.

1.5 Contributions

1.5.1 The Join Operator

This thesis presents a join operator that first converts formulas to so-called “types”,
with information grouped by the involved variables (despite their name not connected
to C types, but only containing information gained from the semantics of the code’s
operations). Types include, for example, pointers or integer scalars, each possibly with
additional information about the variable (like a concrete integer value, or the variables
they point to at certain offsets). In addition to types, each variable can have a set of
constraints, representing information not specific to a certain type such as the size of the
containing memory block or equivalences to other variables.

These types are extracted from pre- and postconditions using a simple set of rules
and can be converted back just as easily. However, they form a much better basis for
structured joining since this is done on a per-variable basis. With a variable-type map,
all information for a specific variable is easily available in a structured way without the
need to look through the whole formula.

Types are then joined recursively, starting with program variables. Then, depending on
the kinds of types of the two variables to join, different rules are applied, each either
returning a new, possibly more general type, or a failure token to make the respective path
of the join fail. When joining pointer types, their targets are joined pairwise, updating
the respective types on the fly.

4

1.5. Contributions

Listing 1.2: Types for the example states (shortened)
list_anch: {
// state 1:
0-(8)->list,
// state 2:
0-(8)->%l1,

}
%l1: {
0-(8)->list

}
list: ?

In addition, pointers can be collapsed into pointer chain segments, and the algorithm even
includes an abstraction procedure where pointer chains are abstracted into a segment
predicate if a join is otherwise not possible (for example, because one segment ends sooner
than the other one). For these segments, the join algorithm is called recursively as well,
joining variables inside their lambdas (the description of a single link in the segment,
including the pointer to the next link).

Similarly, constraints are joined for each encountered variable via a simple set of rules.
Here, the algorithm checks whether any additional equivalences between previously
otherwise possibly distinct variables need to be introduced for the join to succeed and
fails if that is the case.

After a successful join, variable types are converted back to formulas, and a check for
entailment is performed using a solver to filter out any potentially unsound join results
(generated because of choices made for the sake of simplicity and performance). If the
entailment holds from the new to the old states as well, a fixed point has been found and
the corresponding loop can terminate.

This procedure is performed on all pairs of old and new states (from before and from the
respective loop iteration), taking states that were successfully joined out of the equation.
There might be some improvements to this, checking for compatibility before the actual
join, but this is not the main topic of this thesis and is left open for future research.

In the example from Listing 1.1, where the types for the two states in lines 11 and 12 are
shown in Listing 1.2 (shortened to the relevant parts), the two states would be joined
as follows: list_anch has a pointer type that points to %l1 and list, so these two
variables are joined. Since the former is a pointer and the latter is unknown (list is
the last known link, so the analysis does not know whether there are more pointers from
there), the join cannot immediately succeed and abstraction is performed, yielding the
same linked segment as before. All pointers are collapsed into this segment and the state
is stable, leading to the correct result being returned.

5

1. Introduction

1.5.2 Evaluation

The performance of this algorithm has been evaluated and compared to the baseline
implementation in Broom where abstraction happens opportunistically and states are
only pruned where an entailment holds. For this comparison, multiple aspects have been
considered, including the runtime and memory usage of the analysis, the number of join
points encountered, and the quantity and quality of generated contracts.

Runtime and memory usage have been found to generally be higher when using the join
operator, consistent with the fact that the number of required join points only differs very
marginally. While the number of contracts that can be generated for each function is
very similar to the base case as well, there are several functions where contracts are either
only found when the join operator is used or the limit of loop iterations is increased,
indicating a general improvement of analysis results caused by the operator. In addition,
for some functions, the join operator contributes to semantically equivalent but more
concise contracts, presumably due to the normalization applied during the join.

This thesis first discusses related work in Chapter 2 and then dives deeper into the
ecosystem around Broom in Chapter 3. Then, requirements for a join algorithm are
established in Chapter 4 and the algorithm together with its implementation for Broom
are described in Chapter 5 and 6, respectively, together with possible variations in
Chapter 7. Finally, experimental results comparing the algorithm to the base case are
outlined and discussed in section 8.

6

CHAPTER 2
Related work

Broom, which the work in this thesis is based upon, and its surrounding ecosystem
have been described in [HPR+22, Kai23, SRVZ23]. Broom is a static analysis tool for C
code that specializes in analyzing code that utilizes low-level memory operations such as
pointer arithmetic and in particular supports linked pointer segments and data structures
that make use of them, like linked lists. This is accomplished by always operating on a
per-field basis and providing abstraction predicates that represent singly- or doubly-linked
pointer chain segments of a certain structure.

Broom uses bi-abductive analysis to generate contracts for functions that consist of
pre- and postconditions expressed using separation logic. Code is executed symbolically,
finding missing preconditions and the current state’s postconditions by solving the bi-
abduction problem. This is done for all functions along the call tree, starting from the
leaves, to retrieve contracts for all available functions. It is worth noting that Broom
also supports open programs, ie. programs where not all parts are available at the time
of analysis; there, contracts can still be generated for any available functions. This
functionality has been described extensively in the aforementioned papers and is detailed
in Section 3. Furthermore, Broom’s source code is available at [HPR+19].

A similar system that served as a big inspiration for Broom, uses a comparable abstraction
model and includes a join operator, although for slightly differently structured states,
is Predator[DPV11, DPV13, DPV14, HKP+16]. Predator uses a model called Symbolic
Memory Graph, which is a graph that represents an abstract state of the program’s heap.
Such graphs consist of objects and values, representing allocated objects or memory
regions as well as concrete values, respectively. In addition, there are edges between
these entities, describing either has-value or points-to relations. Objects can not only be
predefined single-size memory regions but also list segments or 0/1 abstract objects that
are possibly NULL.

7

2. Related work

The join operator in Predator is a core component of the system, with it not only joining
two symbolic memory graphs to prune the state space but also serving as the location
for abstraction as well as even a basis for entailment. Joining at loop edges is therefore
strictly required for the termination in Predator, with the final state emanating from the
join result of multiple loop iterations. Predator’s functionality is outlined in more detail
in section 4. Sadly, formal documentation of the inner workings of the said operator
is limited, and so Predator’s code[DVP+16] itself must provide additional details when
analyzing the rules used to join memory graphs.

Shape analysis, with its goal of analyzing properties of programs that work with heaps
and pointers therein, has been a popular “genre” of program analysis for many years; the
logic used to accomplish this in Broom, separation logic, has been formally described by
[Rey02]. Since then, a lot of work has been based on separation logic, including, among
others, [BCC+07, BBC08, Atk10, BIP10, Chl11, DOY06].

Some have, just like Broom, extended this logic with predicates indicating pointer
segments or linked-list-like structures to act as a unit of abstraction and thus as the basis
for the termination of the analysis; examples are [CRN07, DOY06].

Primarily, separation logic, as an instance of the logic of bunched implications[OP99],
introduces two additional operators besides the ones available in standard Hoare logic:
The separating conjunction and the points-to operator. While the former provides a way
to split a formula into several parts that each operate on a distinct, non-overlapping
subset of the heap, the latter defines the formula counterpart to memory addresses stored
as pointers in C. Separation logic is explained in Section 3.2.

Just like in Broom, bi-abductive inference is often used to synthesize separation-logic-
based contracts, including pre- and postconditions, from code blocks[CDOY11, TLDC13,
LGQC14, CLQ19, CL20]; the term was popularized by Calcagno et al.[CDOY11]. Bi-
abduction is usually used as part of the symbolic execution pipeline and enables the
analyzer to simultaneously find missing parts of the precondition needed to execute
a piece of code and the state that holds after its execution by solving the abduction
problem as well as the frame problem, respectively. This way, program statements can
be analyzed one by one to find contracts for code blocks and whole functions. Section 3.1
introduces bi-abduction formally and explains how it can be used in the analysis process.

Likewise, low-level pointer operations have been subject to research[KSV10, Min06,
CDOY06], analyzing the goal of performing shape analysis of programs with unstructured
memory access, including things such as pointer arithmetic or block splitting. The
problems and complications these operations can pose for such an analysis are detailed
in section 3.5; many different solutions have been proposed, most dictating some of the
main design choices when building such an analyzer.

Apart from the documentation on joining in Predator, there has been some work on
joining states described using separation logic, although the literature on this topic is
relatively scarce. Work from these papers is discussed further in section 4.

8

[LBCR17] introduces an approach that calculates the silhouette of a symbolic heap and
checks for compatibility of several such silhouettes to find join candidates to later generalize
their silhouettes into a common match. A silhouette is a set of vertices and paths,
corresponding to variables and pointers, respectively, represented as a regular expression
(enabling repetition to symbolize repeated segments). These regular expressions can
be compared easily to find matching states, which are then joined by generalizing the
expressions into a common, more generic version. This approach does not only suggest
an algorithm for the join itself, but also for the process of selecting sets of states that
match and can therefore be joined with each other.

[YLB+08], on the other hand, proposes a rule-based join operator that reduces input
states and simultaneously adds generalized (abstracted) versions of what was removed to
the output state. Later, the amount of information lost because of the join is determined
to check whether the result is accepted.

To accomplish this, a set of rules is applied incrementally to build the resulting state and
auxiliary information while simultaneously chipping away parts of the input states until
they are empty and the result contains all necessary information. Auxiliary information
includes an equivalence map of joined variables as well as lists of segments that have been
generalized and are now possibly empty. Using this information, a check is performed to
possibly find equalities between variables introduced in the course of the join that are
not present in both input states, which indicates a high loss of information and therefore
causes the join to fail.

Lastly, [MSRF04] defines an abstraction operator to merge states that have the same
universe while possibly keeping several disjunct states, very similar to what is done in this
thesis. Determining universe congruence equivalence classes is accomplished by converting
concrete program configurations to abstract ones, expressed in 3-valued logic. This way,
discrepancies between two states are expressed with the 1/2 value made available by
3-valued logic, which enables non-deterministic choices for values and pointers. Using this
abstraction layer, matching states can easily be joined into a common higher-level state.
An abstraction function is defined that performs this operation in a bounded manner so
as not to abstract too much and get a trivial state.

9

CHAPTER 3
Broom

The open-source project Broom[HPR+22], a “static analyzer for C based on separation
logic and the principle of bi-abductive reasoning”[HPR+19], was developed as a collabora-
tion between the Brno University of Technology and the Vienna University of Technology
and aims to statically analyze C programs that utilize low-level pointer operations, with
a special focus on linked pointer segments. This chapter dives into the functionality of
Broom, as well as the paradigms used in the project.

Contracts are generated by Broom using bi-abduction (see section 3.1) and expressed in
separation logic (see section 3.2). Since linked pointer segments are of utmost importance,
the chosen unit of abstraction is a linked segment (see section 3.3).

3.1 Bi-Abduction
This section gives an overview of what bi-abduction is, how it is used in combination
with symbolic execution, and what role it plays in the analysis process in Broom and the
join in particular. All explanations of bi-abduction below are based on the article on the
topic by Calcagno et al.[CDOY11].

Bi-Abduction is a mixture of abductive analysis to synthesize preconditions and the
frame problem, ie. finding postconditions or “leftover state”. Therefore, states in Broom
consist of several parts:

• The missing part, containing the missing part of the precondition to be able
to execute the code up to the current position, ie. the anti-frame; traditionally
inferred using abductive analysis.

• The current part, containing the current state at a program point, ie. the frame;
the question of the frame problem.

11

3. Broom

• A list of existentially quantified variables for the formulas above.

The bi-abduction problem is, given two formulas P and Q, to find the antiframe M and
the frame F so that P ∗M |= Q ∗ F holds. Furthermore, it is desired for a bi-abduction
procedure that solves this problem to find a solution that is as minimal as possible, and
that especially does not lead to a trivially valid entailment (with an unsatisfiable formula
on the left side).

Symbolic execution is applied to individual program instructions to generate pre- and
postconditions for every statement (for example, a precondition not allowing a pointer to
be null when it is dereferenced). For instruction I with precondition AI (which needs
to be fulfilled for the statement to be executed without errors) and postcondition BI

(guaranteed to be fulfilled after execution if the precondition was satisfied before), the
contract {AI}I{BI} (in Hoare triple notation, where {A}P{B} denotes that assertions
A and B are pre- and postconditions, respectively, for program segment P) for the
instruction is added to the state via bi-abduction. For every function, the analysis
starts with an empty state and adds equalities between program variables and their
anchors (representing their value at the start of the function, no matter the current
position). Then, the currently available interim contract {A}P{B} (with the previously
synthesized pre- and postconditions A and B for the program segment P) is taken and
the bi-abduction problem B ∗M |= AI ∗F is solved to find a new antiframe M to add to
the state’s precondition, as well as a new frame F for the current postcondition. The new
state {A′}P ; I{B′} then has A′ = A∗M as its missing precondition and B′ = B∗F as the
current postcondition. This procedure is repeated and the state is updated throughout
the function, finding contracts for nested blocks and function calls before their parents
(which are then treated just like contracts for single instructions). For loops, fixed
points need to be found to serve as contracts for the entire loop. After contracts for all
instructions in a function have been added to a state, the result is a sound contract for
the function itself and can be used for the analysis of functions calling it.

Because this combines both sides into one analysis step, contracts contain both a pre-
and a postcondition after just a single run through the program. At the time of writing,
a second run is required to verify that contracts hold for all branches of a function,
including ones that were skipped during the first run. In this second run, preconditions
of the first run are used to find postconditions again, and preconditions that might lead
to errors in certain branches are discarded. However, there are efforts to change this and
ensure the soundness of contracts after just a single run[SRVZ23].

The fact that bi-abduction is used, as opposed to finding pre- and postconditions sepa-
rately, has a great influence on the requirements for the join operator. Most prominently,
it means that both the missing and the current part must be joined simultaneously and
that results must fit together. Otherwise, seemingly irrelevant names for logical variables
now gain a lot of importance, and simple renaming is not possible anymore (whereas
usually, giving an existential variable a new name results in an isomorphic formula).
Additionally, removing seemingly redundant variables (equivalent to another variable)

12

3.2. Separation logic

might in some cases not be possible anymore. The solution to this problem is discussed
further in section 5.2.10.

3.2 Separation logic
Naturally, to analyze a certain aspect of a program, an expressive enough logic is required
to describe resulting contracts. Since the main goal of Broom is to reason about heap-
allocated objects, separation logic[Rey02, O’H19] seems like a reasonable choice. This
section gives a short overview of separation logic, based on the paper of the same name
by Reynolds[Rey02].

Separation logic, as an instance of the logic of bunched implications[OP99], is an extension
to standard Hoare logic, defining additional operators and their semantics. Therefore,
standard logical operations, such as conjunction, equivalence, or comparison, as well as
arithmetical operations, continue to be available alongside the newly introduced operators.
Separation logic includes the following additional operators:

• The separating conjunction *, or “star operator”, is similar to a normal con-
junction operator; however, it additionally requires the two connected clauses to
be in disjoint parts of memory. This way, reasoning about memory without the
problem of aliasing is possible.

• The points-to operator -> describes a pointer as used in conventional pro-
gramming languages, ie. a variable containing the memory address of a certain
piece of data. This is the central part of separation logic that makes analysis of
heap-allocated objects possible.

• The separating implication -∗, or “magic-wand operator”, describes an implica-
tion in a certain heap, stating that if the heap is extended in some way, a certain
attribute holds. This operator, however, quickly leads to undecidability[PZ22],
especially in the presence of a list segment abstraction[HPR+22], and, since it is
not required to describe formulas generated by Broom, it is not further discussed
in this thesis.

For the join operator, especially the presence of the points-to operator is a key factor for
its functionality. Since all spatial predicates in Broom are connected via the separating
conjunction, it is safe to treat this just like a conventional conjunction (while ignoring
aliasing).

3.3 List abstraction
To make static analyses terminate, there always has to be some layer of abstraction
between formulas in contracts and the real world. In Broom, the central entity in question

13

3. Broom

is the linked list, and so new predicates are introduced to describe pointer segments of
arbitrary length. This section first describes the structure of these predicates, followed
by when and how they are generated by Broom[HPR+19].

3.3.1 Singly-linked segments

The simplest case for a linked list is a singly linked one, with each element containing
a link to the next at a certain offset. To describe a list segment, a start, and an end
are needed, as well as information as to how to proceed to the next element, given any
element in the segment, together with any additional information about the respective
element. In addition, Broom supports shared variables, ie. variables that point to the
same memory location for all elements in a list. For example, all entries in a certain list
might have a pointer back to the list start.

Therefore, a singly-linked list segment is constructed as follows:

Listing 3.1: Signature of a singly-linked list segment
S l s e g (src , dest , lambda , shared)

Here, src is the start and dest is the end of the segment. lambda contains information
about a single element (including the pointer to the next element) and shared is a list
of expressions shared between elements, usually referencing variables in the containing
formula.

A lambda consists of a list of two or more parameters (ie. variable names) and a formula.
The first parameter always corresponds to the current element, while the second one
describes the subsequent element. The formula then describes the current element via the
first parameter, and how the next element can be reached from it (presumably through
pointers originating from the current element). All remaining parameters directly correlate
to the list of shared expressions (the third parameter to the first shared expression, and
so on), so these variables being used in the lambda formula represent references to the
respective expressions in the outer formula.

For example, take the lambda from Listing 3.2: The parameters %l1, %l2, and %l5
correspond to the source, destination, and the first shared argument (%l7+8), respectively.
Therefore, for each link in the segment, the pointer at offset 0 points to the next element
in the segment, the pointer at offset 8 to NULL, and the pointer at offset 16 to some other
memory address %l7+8, the same for every element in the segment.

No assumptions about the length of a segment are made; however, segments may not be
empty and instead must contain at least one link.

3.3.2 Doubly-linked segments

In real-world examples, a commonly used structure is the doubly-linked list, extending a
singly-linked one with a link back to the previous element, and thus allowing for traversal
of a list in both directions.

14

3.4. Formula structure

Listing 3.2: Example lambda
lambda[%l1,%l2,%l5]:{

%l1-(8)->%l2 * (%l1+8)-(8)->%l3 * (%l1+16)-(8)->%l5 &
(%l1!=NULL) & (%l3=NULL)

},[%l7+8]

The predicate for doubly-linked segments in Broom looks similar to the one for singly-
linked segments:

Listing 3.3: Signature of a doubly-linked list segment
Dlseg (f s t , f s t_back l ink , l s t , l s t_fwdl ink , lambda , shared)

fst and lst correspond to src and dest from the predicate for singly-linked segments,
respectively, describing the two ends of the list. In addition, the two expressions
fst_backlink and lst_fwdlink are captured, describing the forward link for the
last and the backlink for the first element. This is necessary since, as opposed to singly-
linked segments, where the target can be an arbitrary piece of data, here both the first
and last element are list elements and therefore need to possess both of the pointers (or
possibly pointer chains) to the successor elements in both directions. In many cases,
these expressions will simply be null (indicating the end of a list); for cyclic lists, they
will contain references to lst and fst, respectively.

The lambda for a doubly-linked segment follows a similar structure to one of a singly-
linked one, with one major difference: Since obviously information about a backlink
has to be present in addition to the forward link, another parameter (the third one) is
introduced to represent the successor element in this direction. Parameters for shared
expressions then start at position four.

3.4 Formula structure

Formulas in Broom are separated into two parts: Spatial predicates Σ and pure predicates
Π. Spatial predicates include everything that describes the heap, namely points-to-
predicates as well as all kinds of list segments. The pure part contains everything else, ie.
predicates from standard Hoare logic. All predicates in the spatial part are joined together
with the separating conjunction (the star operator *); in the pure part, conventional
conjunction is sufficient. A formal grammar definition for Broom formulas can be found
in Listing 3.4 (with trivial definitions, such as int or string, left out for brevity).

In formulas, all variables marked as anchors (_anch suffix) denote program variable
anchors, ie. the value of program variables at the time when the function is called. As
opposed to the variables themselves, this value can never change and can be used to
reference initial parameter values in the postcondition.

15

3. Broom

Listing 3.4: Formal grammar of Broom formulas in EBNF
formula = [spatial-part "&"] [pure-part]
spatial-part = spatial-pred {"*" spatial-pred}
pure-part = expr {"&" expr}

spatial-pred = pointsto | slseg | dlseg
pointsto = expr "-(" sof ")->" expr
sof = expr
slseg = "Slseg(" expr ", " expr ", "

lambda ", [" expr-list "])"
dlseg = "Dlseg(" expr ", " expr ", "

expr ", " lambda ", [" expr-list "])"
lambda = "lambda[" expr-list "]:{" formula "}"

expr-list = [expr {", " expr}]
expr = var | const | unop | binop | "Void" | "Undef"
var = free-var | pvar | special-lvar
free-var = "%l" int
pvar = "%mF" int ":" (varname | anch_name)
varname = a-zA-Z_ {a-zA-Z0-9_}
anch_name = varname "_anch"
special-lvar = "%ret" | "%rF" int
const = int | "true" | "false" | string | float
unop = func | ("~" | "!" | "-") expr
func = ("base" | "len" | "stack" | "static" |

"freed" | "invalid") "(" expr ")"
binop = expr ("=" | "!=" | "<" | "<=" | "&&" | "||" | "<>" |

"+" | "-" | "*" | "/" | "%" | "&" | "|" | "^" |
"<<" | ">>" | "<<<" | ">>>") expr

Listing 3.5: Example formula in Broom
1 %l1-(8)->%mF10:x * (%l1+8)-(8)->%l2 *
2 Slseg(%mF10:x_anch,%l1,lambda[%l1,%l3]:{
3 %l1-(8)->%l3 * (%l1+8)-(8)->%l2 &
4 (%l1!=NULL) & (%l2=NULL)
5 },[]) &
6 (%l1!=NULL) & (%l2=NULL)

16

3.4. Formula structure

Take, for example, the formula in Listing 3.5. This formula contains two points-to-
predicates in line 1, each with a size of target field of 8 (the number in the brackets),
from the logical variable 1 with offsets 0 and 8 to the program variable x (variable 10)
and the logical variable 2, respectively. In lines 2 to 5, a singly-linked list segment from
the anchor of x (variable -10, the initial value of the parameter x when the function is
called) to the logical variable 1, with the specified lambda (with its own spatial and pure
part), is defined. Together, lines 1 to 5 comprise the spatial part of the formula. Line
6 contains the pure part, consisting only of equalities and inequalities (but could also
contain, for example, integer comparisons).

3.4.1 Abstraction

Since no information about what is a list segment is included in input programs (at least
not in a formal way, though only possibly informally via variable names, for example),
originally, the bi-abduction procedure can only generate simple pointers. Therefore,
there needs to be a separate abstraction step to convert these pointers to list segment
predicates where applicable. This section describes when and how this is done in Broom
at the time of writing[HPR+19], excluding any abstraction done in the join operator
(described in section 5.2.8).

For linear programs, abstraction is not strictly necessary since there is no risk of ex-
ponential state explosion. Therefore, abstraction is especially important for programs
with multiple paths, particularly loops, where a fixed point has to be found. Therefore,
abstraction is tried on new states at join points, ie. points where multiple program paths
converge. The effects of abstraction at these points are discussed in more detail in Section
3.6.

The abstraction procedure in Broom seems relatively natural: Intuitively, everything
that “looks” like a list segment is collapsed into one. A pointer chain “looks like” a list
segment if the following criteria are fulfilled:

• The chain has a length of two or more links.

• For all elements, any additional pointers are compatible, ie. they contain similar
information.

• No program variables are lost when abstracting the pointer chain into a list segment.

Of course, this can in some cases yield false positives, but the fact that abstraction is only
done at join points, where coming across such a segment is relatively probable, makes
the success rate high.

Pointers to the same destination for all segment entries are added to the list of shared
expressions, and a fresh variable is introduced as a new lambda parameter. Then, the
formula for the new lambda is equal to all reachable predicates from the source variable
(ie. the first variable in the pointer chain), cut off at its successor.

17

3. Broom

If all elements contain a pointer back to the previous element, the segment is assumed to
be doubly-linked. Since this is not always known at the time of abstraction (e.g. if a list
is first traversed in the forward direction, and only after that backward, in a separate
loop), segments might in some cases be wrongly abstracted as singly linked.

3.5 Low-level memory operations
One important aspect of Broom is that it does not only handle cleanly structured memory
access but also low-level pointer operations, as commonly used in C programs. This
section gives an overview of what such operations might be and what problems this can
pose for the analysis and the join algorithm.

Firstly, pointer arithmetic is an important topic when analyzing C code[Min06]. This is
already handled relatively well in Broom, which operates on a per-field basis (instead of
using whole objects), and therefore does not place a lot of additional restrictions on the
join operator, except for the requirement to handle pointer offsets.

Another point to consider that can very well have an impact on the join algorithm, is
the concept of block splitting: In C, traditionally all memory allocation happens via a
call to malloc which returns a block of memory of user-defined length. This block is
then often used for multiple different objects by simply splitting the memory region as
needed. In reality, allocating for several objects at once is often encouraged, since the
overhead of malloc is minimized to a single call[DDZ94, LC02]. In addition, memory
blocks or parts thereof might be reused for entirely unrelated purposes after not being
needed anymore for their initial cause.

This results in the sizes and types of pointer targets not being constant over time. For
example, directly after the call to malloc, the returned pointer points to an n-byte
memory region with undefined content. At a later point in time, though, the very same
pointer might only point to a single integer, with the rest of the block used for other,
unrelated data. Of course, the rest of the block can in theory still be reached from the
original pointer via pointer arithmetic, but this might not be desired anymore.

Furthermore, this problem might not even only arise over time, but possibly also in a
single state: In some cases, a certain memory region might have multiple interpretations
at the same time[Min06]. For example, an entry of a linked list might be interpreted as
the list head (with information about the list, ignoring any data specific to the list entry
itself), or as an object that may or may not be part of a linked list (paying attention to the
objects fields, but treating list metadata as arbitrary data). The concept of this example
is often used in the form of intrusive lists, where list metadata is embedded in some
region of the objects to be ignored by code operating on the objects themselves[HPR+22].
Another example is a pointer to an object, which can also be interpreted as a pointer to
the first field of said object.

One additional function introduced into Broom formulas to be able to handle such
low-level operations is the base function, returning the address of the start of the memory

18

3.6. Join points

block (such as a region of memory returned by malloc) a certain address is in. This can
be used to enforce pointer arithmetic to work by equating bases of multiple variables,
therefore ensuring them to be in the same block, which is required to jump between them
by pointer addition (at least when using constant offsets).

3.6 Join points
A join point is a location in a program where multiple paths converge, commonly
encountered at the end of a loop. Here, there might be some previous states (for example,
from previous loop iterations) and one or more new states (from the current iteration).
This section describes how states are handled for blocks and entire functions, at what
point in time entailment is done, and how fixed points are found without the join operator.
Naturally, the introduction of a join operator must change this process.

During the analysis of a function, states are kept in a so-called state table, mapping
unique identifiers of basic blocks (linear blocks of code without any branches or loops) to
lists of states, as well as a counter indicating how many times the entailment procedure
to find a fixed point for the block (if it comprises a loop) has been called. When this
counter reaches a certain limit (five calls by default), the process is canceled and no
contract for the containing function is found.

Basic blocks are executed symbolically, and states are built from the instructions or
adopted from previously executed nested blocks. At the end of a block, these states
are added to the corresponding state table for the id of the block. Now, abstraction is
performed for all new states (configurable to be executed at the end of every block, or only
at the end of loops), abstracting pointer chains into segment predicates (see Section 3.4.1).
Then, the new states to be added to the state table are filtered, dropping any states that
are entailed by any of the old states (indicating that all the information from the state was
already there in an earlier iteration). Now, any unchanged states are removed. In addition
to the original state lists Sold and Snew, now Sadd := {s ∈ Snew.¬∃s′ ∈ Sold.s

′ |= s} is
available.

After this step, the process continues in the other direction: Any states previously present
in the map that are now entailed by one of the remaining new states are pruned. This
way, new states that simply contain more information than old ones replace them instead
of accumulating redundant information, leaving states in Skeep := {s ∈ Sold.¬∃s′ ∈
Sadd.s

′ |= s}.

Lastly, any new states (Sadd) receive a flag indicating that they have not yet stabilized,
and further iterations might be necessary. The next time the block gets symbolically
executed, states with this flag serve as the initial states the execution engine will build
upon.

This algorithm has a good chance to terminate for loops iterating over linked lists. If a
linked-list-like structure is detected, it will be abstracted to a list segment immediately
after the end of the loop block. Then, even though this abstracted state cannot yet be

19

3. Broom

pruned by entailment from any old states (that do not contain the list segment predicate),
old states will likely be removed (with the list segment entailing a concrete version, like
a list with a single link expressed using points-to predicates), and symbolic execution
will continue on the abstracted state. Here, another pointer will be added (alongside
additional information about the next link in the list), which will be collapsed into the
existing segment during the next abstraction step. Now, this new state does not contain
any more information than its predecessor, and the first entailment will hold, dropping
the state. If there are no new states left, analysis of the loop is complete and one or
more (in case of additional branches inside the loop, or base cases like an empty list not
collapsed into the abstraction) states will be stored as the final contracts of the block.

This procedure is repeated for every block in a function (evaluating inner blocks before
their parents, and using their contracts when executing parent blocks) until contracts for
the entire function are available or a limit is reached. In case a function calls another
function with no available contract, its execution is aborted immediately.

Note that functions are evaluated strictly from leaf to root in the call tree. This way,
contracts for called functions, if found, are always available. Recursion is not supported
by Broom.

20

CHAPTER 4
Joining States

This section describes the problem at hand, including hard requirements for a join
algorithm, as well as factors that are nice to have or should be as optimal as possible,
without the aspiration to absolute perfection. Then, some overview and discussion about
how this may be achieved and how other projects try to solve similar problems are given.

4.1 Problem description

An algorithm should be introduced that, given two states for the same program point
(although at possibly different paths to get there), returns a single state representing joint
information from both inputs or the information that the two states are incompatible.
Furthermore, this algorithm should be integrated with the existing pipeline of the analyzer.

There are a few requirements for this algorithm:

• The algorithm should be correct.

• A join should be refused if it were to lead to too big of a loss of information.

• The algorithm may use abstraction to better achieve its goal.

• Joining two states should try to lead towards fixed points for loops.

The first point seems evident but has to be mentioned nonetheless. Correctness in this
scenario means that given a program segment P and two states correctly describing
said segment (ie. the state’s contract holds for the program segment) S1 = {A1}P{B1}
and S2 = {A2}P{B2}, the join result of the two states S./ = S1 ./ S2 = {A./}P{B./}
should be a consequence of the two inputs. For example, {A1 ∧ A2}P{B1 ∧ B2} or

21

4. Joining States

{A1 ∧ A2}P{B1 ∨ B2} are valid outputs, but {A1 ∨ A2}P{B1 ∧ B2} in general is not
(since deriving both postconditions from only one of the preconditions is not sound).

Point number two is less clearly enforceable than the first one since losing “too much”
information is always a matter of context. Joining without any loss of information is
possible for two semantically equivalent states; otherwise, the algorithm usually has to
generalize in some way to get a joined state. This could be circumvented by introducing
disjunctions for the affected predicates and adding implications from the corresponding
predicates in the missing part to ones present on only one side in the current part to the
latter; however, this would in many cases greatly inflate the size and complexity of states.
Therefore, an algorithm should be found that might in such cases drop information, but
not too much so as not to prevent a reasonable result from being found. This should
be verified using real-world examples to perform especially well for patterns commonly
encountered there.

The third point states that abstraction during the join process is possible, as long as
it is done correctly. This, however, is already verified by the first point, checking for
entailment between the old, unabstracted version and the possibly abstracted result.

The last point states that, for two correct join results S./
1 and S./

2 , the one entailing its
inputs (S./

i |= S1) ∧ (S./
i |= S2) is better. Oftentimes, however, such a result might not

be possible, or multiple results fulfill this criterion.

Note that the terminology “join” here differs from what the word is usually used for
when working with states generated by program analyzers: Instead of a join in a state
lattice, which would lead to virtually unusable results (since lots of information would be
lost there), the join operator needed is rather a widening operator that takes two states
as its input and merges them. Nonetheless, the word “join” is used throughout this thesis
for simplicity.

4.2 Approaches to joining

This section presents a few approaches to joining states, formulas, or similar structures.
For each, advantages and disadvantages are outlined, and their relevancy for the joining
of states in Broom is discussed.

4.2.1 The trivial join

Joining correctly is possible in every case in constant time by always emitting the trivial
state {false}P{true}. This state is always valid for every program P and thus entailed
by any input.

However, this state violates the second goal introduced in the last section: All information
from the input states is lost, and so this state cannot possibly be a good join result
(except for the case where both input states are empty as well).

22

4.2. Approaches to joining

4.2.2 Always refuse to join

There is another extreme, also trivial way to implement a correct join algorithm: No
matter the inputs, always refuse to join. Termination can, at least in theory, still be
reached if a state exactly (syntactically) matches a previously encountered state and the
structure storing the states is a set that does not allow repeated elements. Obviously, in
real-world examples, this will never occur, so just like always joining to a trivial state,
this option does not work for analyzing real code.

4.2.3 Join by entailment

After two rather hypothetic variants of joining, this section presents a version usable
for a variety of formula structures, even though the word “joining” is again a slightly
questionable choice: Joining formulas by checking for entailment using a SAT solver
such as Z3[DMB08] or cvc5[BBB+22]. Here, when there is an entailment between two
formulas (either A |= B or B |= A), the formula on the right side of the entailment can
simply be discarded (since all of the information is already present in the other formula),
and the formula on the left can be taken as the join result. As both inputs to the call to
join must be valid states, there is no need for the question of correctness as an already
correct formula is simply inherited.

There is, however, one big condition for this approach to work: Entailment has to hold for
subsequent iterations of a loop after a somewhat small set of initial ones; if, for example,
a new pointer is added to a separation logic formula in every iteration and no abstraction
is done to constrain the number of pointers, entailment can never hold for new states
(due to the strictly increasing and thus never equal number of pointers), and the analysis
will not terminate.

4.2.4 Opportunistic abstraction

To combat this problem, abstraction can be applied on a best-guess basis in hopes of
making entailment possible. This is exactly what is done in Broom if no explicit join
operator is present or enabled[HPR+19]: Abstraction is applied wherever possible, and
in a lot of cases this will lead to a more general formula that covers states from future
iterations as well.

Of course, the success of this approach depends on whether changes to state in a loop can
be abstracted in the given domain. Furthermore, this can lead to superfluous abstraction
and thus in some cases worse (more abstract) results, even though a more concrete result
could have been obtained with another strategy.

4.2.5 Disjunctive joining

The presumably most used option for merging multiple states into one is a relatively
simple one; states can simply be concatenated with disjunctions[Cop14, HSS09, KKBC12,
SHB16]. Combining a disjunctive list of states into one state disjunctively is trivially

23

4. Joining States

correct; then, depending on the structure of states, semantic-preserving operations can be
applied to simplify the result. For example, for a state containing pre- and postcondition
formulas, instead of merging on a state level, preconditions can be joined disjunctively if
they are added as the left side of a newly introduced implication to the corresponding
postcondition (({A1}P{B1}) ∨ ({A2}P{B2})⇔ {A1 ∨A2}P{A1 → B1 ∧A2 → B2}).

This works well in some cases of standard Hoare logic, where all clauses are pure and a
SAT solver can relatively easily work with bigger formulas. However, since formulas joined
like this get complex relatively quickly (containing most clauses from all input states),
this can quickly become too much for a solver to handle[HSS09, KKBC12], especially if
additional, more complex logic elements such as separation logic are added.

4.3 Joining states with heap predicates

After a few more general approaches, this section focuses on approaches to join states for
shape analyzers, ie. states that contain heap predicates. First, due to its close relation to
Broom, Predator[DPV11, DPV14] is discussed in more detail; then, two more approaches
are summarized.

4.3.1 Joining memory graphs

Broom is for many aspects inspired by Predator[DPV11, DPV14], another shape analyzer
that, however, does not use separation logic but instead a graph representation of memory:
Symbolic Memory Graphs. This section focuses on how joining states is done there
and what role the join operation plays in the ecosystem; the information in this section
stems mostly from the article on Predator’s algorithmic details[DMP+13], as well as the
implementation itself[DVP+16]. Illustrations for examples in this section are generated
directly by Predator.

Symbolic memory graphs are graphs representing an abstract memory layout, with
objects (single objects in memory or list segments) and values (single scalar values or
pointers) as nodes and has-value (relating object fields to concrete values) and points-to
(relating object fields to memory locations they point to) relations as edges. Singly- and
doubly-linked list segments in Predator store a minimum length, making it possible to
represent possibly empty (length 0+) list segments. When joining, the lower of the two
minimum lengths is used. In addition, there are so-called 0/1 abstract objects, ie. objects
that are either present or not (in which case pointers to them point to NULL instead).
Shared expressions are made possible by storing a nesting level for all objects, indicating
their scope.

The join operator in Predator serves several purposes: In addition to simply joining
two states, it is the place where abstraction is done, and even entailment is done via
joining by using the join status relation returned by the algorithm, indicating whether
two graphs are equivalent, in an entailment relation, or incompatible.

24

4.3. Joining states with heap predicates

CL#2534:x [obj = #4] field#6

NULL

(a) Null variable

#19 [SC_ON_HEAP, size = 16 B]

.next #21

[+0]

.inner #23

[+8]

NULL NULL

CL#2534:x [obj = #24] field#26

#20 [off = 0, obj = #19]

[+0]

(b) Object

Figure 4.1: Null is never joined with an object

SLS 1+, head [+0], next [+0]

CL#2534:x [obj = #4] field#5

#9 [off = 0, TS_FIRST, obj = #6]

#6 [SC_ON_HEAP, size = 16 B]

.next #7

[+0]

.inner #8

[+8]

NULL NULL

[+0]

(a) Null child

SLS 2+, head [+0], next [+0]

[L1 prototype] 0..1

CL#2534:x [obj = #87] field#89

#126 [off = 0, TS_FIRST, obj = #120]

#120 [SC_ON_HEAP, size = 16 B]

.next #121

[+0]

.inner #122

[+8]

NULL #125 [off = 0, obj = #123]

#123 [SC_ON_HEAP, size = 8 B]

.next #124

[+0]

NULL

[+0]

[+0]

(b) 0/1 abstract object child

SLS 1+, head [+0], next [+0]

[L1 prototype] 0..1

CL#2534:x [obj = #4] field#5

#9 [off = 0, TS_FIRST, obj = #6]

#6 [SC_ON_HEAP, size = 16 B]

.next #7

[+0]

.inner #8

[+8]

NULL #12 [off = 0, obj = #10]

#10 [SC_ON_HEAP, size = 8 B]

.next #11

[+0]

NULL

[+0]

[+0]

(c) Join output

Figure 4.2: 0/1 abstract objects can be joined with null

When joining two memory graphs, nodes are joined on a one-to-one basis; when two
nodes are joined, a join reinterpretation function makes sure that their semantics match,
or that the algorithm fails if they are too diverse. If joining two nodes is not possible, a
list segment with length 0+ (which is possibly empty and can therefore occur practically
everywhere) is introduced, and joining is tried again.

25

4. Joining States

#19 [SC_ON_HEAP, size = 16 B]

.next #21

[+0]

.inner #23

[+8]

NULL NULL

CL#2534:x [obj = #24] field#26

#20 [off = 0, obj = #19]

[+0]

(a) Object

SLS 2+, head [+0], next [+0]

CL#2534:x [obj = #48] field#50

#62 [off = 0, TS_FIRST, obj = #59]

#59 [SC_ON_HEAP, size = 16 B]

.next #60

[+0]

.inner #61

[+8]

NULL NULL

[+0]

(b) Singly-linked segment

SLS 1+, head [+0], next [+0]

CL#2534:x [obj = #4] field#5

#9 [off = 0, TS_FIRST, obj = #6]

#6 [SC_ON_HEAP, size = 16 B]

.next #7

[+0]

.inner #8

[+8]

NULL NULL

[+0]

(c) Join output

Figure 4.3: Objects can be collapsed into list segments

SLS 1+, head [+0], next [+0]SLS 1+, head [+0], next [+0]

CL#2522:x [obj = #4] field#5

#9 [off = 0, obj = #6]

#6 [SC_ON_HEAP, size = 16 B]

.next #7

[+0]

.inner #8

[+8]

#16 [off = 0, TS_FIRST, obj = #13] #12 [off = 0, TS_FIRST, obj = #10]

#10 [SC_ON_HEAP, size = 8 B]

.next #11

[+0]

NULL

#13 [SC_ON_HEAP, size = 16 B]

.next #14

[+0]

.inner #15

[+8]

NULL NULL

CL#2525:z [obj = #18] field#20

[+0]

[+0][+0]

(a) Program variable pointing before
segment

SLS 0+, head [+0], next [+0]

SLS 1+, head [+0], next [+0]SLS 1+, head [+0], next [+0]

CL#2522:x [obj = #4] field#5

#14 [off = 0, obj = #11]

CL#2525:z [obj = #6] field#7

#10 [off = 0, TS_FIRST, obj = #8]

#8 [SC_ON_HEAP, size = 8 B]

.next #9

[+0]

NULL

#11 [SC_ON_HEAP, size = 16 B]

.next #12

[+0]

.inner #13

[+8]

#21 [off = 0, TS_FIRST, obj = #18] #17 [off = 0, TS_FIRST, obj = #15]

#15 [SC_ON_HEAP, size = 8 B]

.next #16

[+0]

#18 [SC_ON_HEAP, size = 16 B]

.next #19

[+0]

.inner #20

[+8]

NULL NULL

[+0]

[+0]

[+0][+0]

(b) Program variable pointing after seg-
ment

Figure 4.4: Program vars need to be preserved

The functionality of the actual join algorithm is relatively intuitive: Program variables
are used as starting points, and objects are only joined if their children are compatible.

One interesting design choice in Predator is that NULL will never be joined with any
object or non-empty list segments, but only with possibly empty segments or 0/1 abstract
objects. This also means that the latter will never be generated by the join, but only by
some other part of the system.

To illustrate the most important rules for joining in Predator, this paragraph presents
some examples. Firstly, null cannot be joined with a simple object (figure 4.1), but

26

4.3. Joining states with heap predicates

joining is possible with 0/1 abstract objects (figure 4.2). Objects can be collapsed into
list segments (figure 4.3), which changes their minimum length to 1. If necessary, such a
segment will be created on the fly. Finally, all program variables are used as anchors
that need to match in the output, so the join in Figure 4.4 is not successful (mind the
variable z, which points to two different locations in the two input graphs).

4.3.2 Joining separation logic formulas

There have also been some attempts to join formulas with list predicates; this section
presents two examples where this has been done.

The first example is presented in a paper by Yang et al.[YLB+08]. Here, the authors try
to, given two input states, find a joined heap along with a list of tuples of variables (one
from each side, plus a new variable representing the two in the joined state), as well as
two lists of list segment start- and endpoints that have been generalized during join to
now possibly empty segments, one for each input side. This is achieved by using a set
of rules, searching for ones that match the input and satisfy any additional conditions.
Input states are continually shrunk until only an empty state is left and the output
contains the join result.

In addition to the output state, there are two additional entities in the algorithm’s output,
which serve an important purpose: Checking whether too much information has been
lost during the join. This is accomplished by ensuring that any equalities now possibly
present (due to possibly empty segments or because of joined expressions) are backed by
both input states; if this is not the case, the join fails.

An example from the paper is joining (ls NE x 0 * y → 0) and (x→ x′ * ls NE y x′ * ls
NE x′ 0) (notations as from the paper, where ls denotes a list segment that is not empty
(NE) or possibly empty (PE) between the other two parameters, for simplicity without
any additional information other than the next pointer). When the join rules are applied
to these two states, it will result in the state (ls NE x v′ * ls NE y v′ * ls PE v′ 0), along
with the variable join tuple (0, x′, v′) (v′ corresponds to 0 in the left input state, and x′
in the right input state) and the generalization lists ∅ (no lists made empty on the left
side) and {(x′, 0)} (there used to be a non-empty segment between x′ and 0 in the right
input state, but this is now possibly empty).

A second approach is presented by Li et al.[LBCR17]. Here, in addition to joining
two states, instructions on how to choose which states to join are given: Each state’s
silhouette, ie. sets of vertices (variables) and paths (pointer chains) represented by regular
expressions, is determined. Then, states are grouped by similar silhouettes, and regular
expressions are generalized through a generalization function. States are finally joined by
matching silhouette edges and joining the corresponding regular expressions by using the
smallest and most general regular expression to represent the path.

For example, when analyzing a binary tree search algorithm, two silhouettes found could
be {(t, l · r · l, x)} and {(t, l · l · r, x)}, indicating paths through the left/right/left and

27

4. Joining States

left/left/right element, respectively, from tree root t to leaf x. These regular expressions
can both be generalized to form the silhouette {(t, (l + r)∗, x)} (“any path through the
left or right elements”). Since this silhouette is compatible with both inputs and no
additional information is lost, the join can succeed.

28

CHAPTER 5
The Join Algorithm

The join algorithm implemented in the course of this thesis takes two sets of states as its
input and then tries to perform pairwise joins between members of the two. The output it
produces consists of two sets as well: States from the first input set that were not joined
(ie. that should be kept as-is), and a union between join results and unjoined states from
the second input set. The reason why join results are combined with unjoined states from
the second input set is that this set is assumed to contain “new” states, e.g. states added
after the latest iteration of a loop. If the need arises, this could easily be changed to e.g.
return three separate sets; however, this was not necessary for this project. This chapter
explains the details of the algorithm, with a formal definition of the join function.

5.1 Selection of pairs to join

Naturally, the input to the join algorithm consists of lists of formulas instead of just
two single formulas, since there can be many distinct states at a given program point.
Therefore, this poses the question of which of the formulas to join, independent of how
they are joined.

The simplest approach to this problem is to just try joining formulas until a successful
join is encountered and then continue the process with all formulas not joined before, ie.
a brute-force approach. Since formulas will only ever be joined if they are compatible and
thus similar enough for the join to make sense, this will usually yield a relatively solid
result. One huge downside of this approach is that many “obviously” impossible joins
will be tried anyway and the join algorithm will be executed possibly many more times
than technically necessary. Furthermore, some states might be better off being joined
with some particular other state, but are out of the pool after being joined with another,
“inferior” state; however, this has proven not to be a deal-breaking problem in practice.

29

5. The Join Algorithm

As an alternative to the brute-force version, one might try to check for compatibility
before the join happens[LBCR17]. To do this, one might extract types (see section 5.2.1)
for all input states and arrange them into “compatibility classes” (ie. sets of formulas
possibly compatible with each other), later only joining inside the respective classes. This
would decrease the number of unnecessary calls to join and could be implemented in a way
where valid joins are never excluded (e.g. putting two states where a particular variable
is scalar in the first and a pointer in the second state in two different compatibility
classes cannot prevent a successful join from happening, since these variables could
not be joined anyway). However, by keeping it this vague, the advantage over trying
all possibilities is relatively small and easily outweighed by the burden of additional
complexity, especially since such obviously impossible joins will be caught by the join
algorithm soon anyhow, which will then immediately terminate. Therefore, this approach
has not been implemented in the course of this project, and the focus was shifted towards
an efficient join algorithm instead.

5.2 Joining two formulas

After two join candidates have been selected, the actual join process can start. Here, we
will receive two states (referred to as “left” and “right” state here), each consisting of a
missing and a current formula together with a list of existential variables, as an input,
and return either a state that represents the result of joining the two input states, or a
special “not joinable” token that indicates incompatibility of the two states.

As mentioned in Section 3.1, caution has to be exercised so as not to lose any relations
between variables in the missing and current part. There are two approaches to achieve
this: Either the two parts have to be joined simultaneously, or the algorithm has to
make sure that no variables are renamed or removed that are part of such a connection.
This implementation uses the latter approach; therefore, the two missing parts are joined
separately from the two current parts, and all operations during the join preserve original
variable names where applicable. Of course, there are cases where this is not entirely
possible (e.g. when joining two differently-named variables); in this case, a check whether
a variable that is still present on the other side (missing and current) of the final result
was lost is performed, and if so a corresponding equality clause to the variable it was
joined with is introduced.

The join algorithm has three steps: First, the input data is preprocessed and converted to
a more suitable form, after which a new formula is synthesized (ie. the join is performed),
which is then converted back to a state. These steps are described in detail in this section.

5.2.1 Preprocessing

Before two formulas can be joined, some normalization has to be performed to simplify
the upcoming process. First, all logical variables (ie. existential variables) in the right
state that occur also in the left state are replaced with fresh variables; this way, referring

30

5.2. Joining two formulas

to such variables is unambiguous and two of the same variable always have to be joined
(which, of course, is not the case for logical variables that coincidentally have the same
name but might represent entirely different entities). For other variables (program
variables and special logical variables like the return value) this is not done, since these
certainly correspond to the same piece of memory (although after a different path through
the program) and thus have to be joined.

After this first normalizing step, the states (or rather the missing and current formulas
in the states) are converted to a format more suitable for joining, which we will refer to
as types.

Types

Since the join algorithm operates on a per-variable basis, the idea of this transformation
is to obtain a map between variable names and all the information available about the
corresponding variable, ie. its type. Note, however, that this uses a far more abstract
notion of a type than, for example, most modern programming languages, where types
are often tightly coupled with concrete code that defines interfaces and behavior (e.g.
classes in object-oriented languages). In this context, however, types only try to describe
what is known about a variable in a specific state, without any regard for capabilities
or changes during the program execution. It is also important to note that no type
information is extracted from source code by Broom since assumptions made by the type
system in C can easily be broken via type casts or pointer arithmetics; therefore, “type”
information only comes from actual memory access patterns (concretized in formulas).
At the time of writing, variable types fall into the following categories (which may be
extended at a later point):

• Variable types with a variable name v and an offset o are references to the type
of another variable %v+o.

• Pointer types represent pointers to memory regions and contain information
known about these regions. This information consists of a map between known,
constant offsets to field sizes (in bytes) and the types of said fields.

• The null type is used for variables that contain a pointer to null.

• Scalar types together with an optional concrete value represent variables containing
an integer.

• Similarly, boolean types describe true, false, or an unknown boolean value.

• Singly-linked segment types contain, much like their counterpart in formulas, a
lambda (which is another map from variable names to types) together with a source
and destination variable, as well as a target variable and offset (ie. the end of the
segment). Note, however, that shared expressions are not directly represented in
slsegs but are instead moved to outer types.

31

5. The Join Algorithm

• Doubly-linked segment types have not been implemented as part of the project;
however, this would be a relatively trivial task: Most aspects are similar to singly-
linked segments, except for the fact that an additional backward destination variable
exists for its lambda. Note, however, that this type has to be inserted not only
for the start variable but also for the “end” of the segment, which can in reality
be seen as the start of the inverse doubly-linked segment (with next and previous
destinations flipped). Broom formulas also include “back pointer from first” and
“forward pointer from last” fields, but these can just be inserted into the pointer
type for the respective variables.

• Outer types are references to variables one step out of a lambda to its parent type
map, isomorphic to shared expressions for lambdas. For example, in a type map
with an slseg that in turn contains an outer type to variable %x+0, this indicates a
reference to %x in the original map instead of the lambda (the “global” %x if the
segment is not nested), as opposed to the variable type %x+0 that references the
variable %x in the lambda. As a Broom formula, this variable corresponds to a
lambda parameter with %x as its value. In nested list segments, outer types point
into their next parent segment. An outer type in the topmost map is meaningless
and will never be generated.

• Wildcard types are used for variables that can be joined with anything; these
will not be generated from formulas, but prove to be useful as intermediate types
when joining lambdas.

• Lastly, unknown types are for variables that are known to exist, but where no
further information is given.

A hierarchical overview of all available types can be seen in Figure 5.1.

Unknown

Null

Boolean

Integer

Scalar

Dlseg

Slseg

List segment

Pointer

Wildcard

Outer

Variable

Figure 5.1: Type hierarchy for join types

32

5.2. Joining two formulas

This set of types, however, is not enough to represent all possible formulas. Therefore,
type maps are augmented with constraints where applicable:

• Program variable constraints indicate that a variable is a program- or special
logical variable.

• Alias constraints are generated when a variable is equivalent to another variable
with an optional constant offset.

• Null constraints explicitly state that a value is null also as a constraint (which is
important since constraints are merged separately).

• Not-null constraints are for values that are explicitly not equivalent to null.

• Constant constraints, just like null constraints, explicitly state that a variable
has a known, constant value.

• Not-equal constraints represent inequalities to constant values.

• Base constraints are for the common pattern in Broom to equate the bases
(addresses of the start of the containing allocated memory block, e.g. using malloc)
of two variables. They contain two variables with offsets, at least one of which
should be equivalent to the variable it constrains.

• Finally, expression constraints are used for any expressions not explicitly handled
by the join algorithm and contain the original expression from the input formula,
as well as the variable name the expression was initially for (to enable variable
renaming).

Generating a type map from a formula is a very natural process:

• Each variable starts as an unknown type with an empty set of constraints.

• Equivalences (to null, numbers, or booleans) are converted to the corresponding
type. For example, %x = 4 would give x the type Scalar(4) and the constraint
Const(4) (as well as a PVar constraint since x is a program variable).

• Equivalences to other variables with a constant offset are converted to alias con-
straints, and another conversion run is done with the corresponding variable replaced
with the current one. For instance, %l2 = %x+8 would result in the constraints
Alias(x, 8) for %l2 and Alias(l2, -8) for x.

• Inequalities (not equal, less, and less than or equal) are converted to constraints,
and the type is fixated to match (e.g. for inequalities with integers, a scalar integer
type is assumed). Therefore, %x != 4 results in the type Scalar(?) and constraint
Neq(4) for x.

33

5. The Join Algorithm

Listing 5.1: Example type map for pointer type
%x: {
0-(8)->Slseg(%l5, lambda(%l1, %l2) {
...

}),
8-(8)->%l1

}

• Equivalences between two calls to the base function are converted to base con-
straints. For the predicate base(%l1) = base(%l2+8), this would result in the
constraint Base(l1, 0, l2, 8) for both variables.

• All other pure expressions, including expressions with complex calculations, are
converted to expression constraints.

• Any variable that is involved in a spatial predicate as a source (pointer or list seg-
ment) has a pointer type; for pointers, the corresponding value at the given offset in
the pointer type map is a variable type, for list segments, it is a list segment type. In
lambdas, additional parameters (after source and destination) are given outer types.
For example, the input formula %x+8-(8)->%l1 * Slseg(%x, %l5, lambda[%l1,
%l2]:{...} results in the type seen in Listing 5.1.

• When additional spatial predicates are encountered, the pointer type is updated
and the corresponding pointer or list segment is added.

• Types are only ever updated and made more concrete, never replaced (except for
the unknown type). If inconsistencies are encountered (e.g. a variable is both a
pointer and a scalar), the join immediately fails.

In the above conversion rules, expressions are normalized (e.g. converting subtractions
to additions with a negated second parameter or swapping operands of additions to
move variables before constants), and offsets are found by matching common expression
patterns. This certainly does not find constant offsets in every expression it possibly could,
but these simple rules have in practice proven to be enough to handle most formulas
generated by Broom.

A more comprehensive example is presented for the formula in Listing 5.2; this would
be converted to the type map in Listing 5.3, with constraints appended in brackets.
Figure 5.2 shows this type map as a graph (constraints omitted for brevity) for easier
visualization: x and l1 are pointers, l2 is null, l4 is scalar, the top box represents the
list segment from l1 to l3 with an outer variable l7 (note that this has its own variable
scope, hence the duplicate variable names), and %ret is unknown; edges are labeled with
the sizes of the respective fields.

34

5.2. Joining two formulas

Listing 5.2: Example input formula
%mF10:x-(8)->%l3 * (%mF10:x+8)-(8)->%l1 *
(%mF10:x+16)-(4)->%l4 * %l1-(8)->%l2 *
Slseg(%l3,%ret,lambda[%l1,%l3,%l7]:{

%l1-(8)->%l3 * (%l1+8)-(8)->%l2 * (%l1+16)-(4)->%l7 &
(%l1!=NULL) & (%l2=NULL) &
(base(%l1)=base(%l1+8)) & (base(%l1)=base(%l1+16))

},[%l4]) &
(%mF10:x!=NULL) & (%l1!=NULL) & (%l2=NULL) & (%l4=17) &
(base(%mF10:x)=base(%mF10:x+8)) & (base(%mF10:x)=base(%mF10:x+16))

Listing 5.3: Example output type map
%x: {
0 -(8)->%l3,
8 -(8)->%l1,
16-(4)->%l4

} (NotNull, PVar, Base(%x, 0, %x, 8), Base(%x, 0, %x, 16))
%l1: {
0-(8)->%l2

} (NotNull)
%l2: NULL (Null)
%l3: {
0-(8)->Slseg(%ret, lambda(%l1, %l3) {
%l1: {
0 -(8)->%l3,
8 -(8)->%l2,
16-(4)->%l7

} (NotNull, Base(%l1, 0, %l1, 8), Base(%l1, 0, %l1, 16))
%l2: NULL (Null)
%l3: *
%l7: Outer(%l4)
})

}
%l4: Scalar(17) (=17)
%ret: Unknown (PVar)

After types have been generated, the left and right type maps for the missing part and
the two maps for the current part are joined into one map each, augmenting the key
(previously consisting only of variable names) with a side, Left or Right, to indicate
where a type comes from and the fact that it has not been joined yet. The third side,
Both, is used later for joined variables.

35

5. The Join Algorithm

0

8

16

l1

8 NULL
l2↑

l7
4

*
l3

8

17
l4

0

8

16

x

8

4

0

l1

8

NULL
l2

8

?
%ret

l3

Figure 5.2: Graph representation of example type map

When these steps are completed, the two maps (missing and current) are ready for the
join algorithm itself, which will be applied to the two individually.

5.2.2 Joining Types and Constraints

After preprocessing, the task of the join algorithm is to make sure all relevant variables
(ones reachable from program variables) have “Both” as their side and to update their
contents accordingly. Therefore, the join operates on a per-variable basis, starting with
all available non-free variables, favoring anchor variables (which are not mutable) over
program variables or special logical variables such as the function return value.

In the following sections, a function ./ (tm, t1, t2) 7→ (tm′, res), res ∈ {Type t, In-
compatible, TryAbstraction} will be introduced that joins the two types t1 and t2 in
the context of the type map tm and returns a new type map tm′, as well as a join
result res. Here, tm[v, s] retrieves the type for variable v and side s ∈ {L,R,B} from
the type map tm (or Unknown if not present), ptr[o] retrieves the pointer member at
offset o from pointer ptr, tm{a 7→ b} updates type map tm with type b at position a,
offset(t, o) offsets type t by o bytes, parent(tm) returns the parent type map of tm (the
type containing the respective list segment), outer(t) converts outer type Outer(v, o)
to variable type V ar(v, o), pg(p1, p2) groups the two pointer arguments as described in
section 5.2.5, reachable(tm, ptr) filters type map tm for all members reachable from ptr,
and offsets(ptr) gets all defined offsets of pointer ptr.

To accomplish this, variable types for program variables and their anchors are “resolved”
one after another, requesting a single (joined) truth for each of them, as well as any
reachable variables. During all steps for type resolution, the type map is updated

36

5.2. Joining two formulas

accordingly, ending in a completely joined map if possible. This process can be seen in
Algorithm 1.

Algorithm 1 The resolve function
1: function Resolve(type, map)
2: if type is Var(var, offset) then
3: if (var, Both) ∈ map then
4: return map[var, Both]+offset, map
5: else
6: left ← map[var, Left]+offset
7: right ← map[var, Right]+offset
8: return Join(left, right, map)
9: end if

10: else
11: return type, map
12: end if
13: end function

For example, look at the type graph in Figure 5.3: Initially, all program variables, in this
case x and y, are requested and joined if still one-sided (green dashed lines). These joins
can, as is the case for y in this example, trigger additional joins (blue dashed lines): l1
from the left and l5 from the right side are joined (despite their differing variable names),
and the same happens for the two sides of l2. Cases where this happens are discussed in
the following sections, with this concrete example handled in section 5.2.5. Variables not
reachable in this way, like l3 in the example, are not relevant for the output and thus not
joined, even if they are present on both sides. How each of these joins is performed is
explained starting in Section 5.2.3.

During a resolve or join operation, valid results are Incompatible, a Type containing a
concrete, new type, TryAbstraction to indicate an impossible join unless abstraction is
applied, or Compatible if the two types are interchangeable (only applicable for a join
operation, not for resolve operations).

resolve(tm, V ar(v, o)) (5.1)
= tm, offset(tm[v,B], o) |(v,B) ∈ tm (5.2)
= tm′{v 7→ t′}, t |l = offset(tm[v,L], o), r = offset(tm[v,R], o), (5.3)

|tm′, t =./ (tm, l, r), t′ = offset(t,−o) (5.4)
resolve(tm, t) = tm, t |for other types (5.5)

When a type resolution is requested, there are multiple possible cases, as defined in the
equations at 5.1:

37

5. The Join Algorithm

0

8

yR

?
xL

?
xR

NULL
l1L

NULL
l5R

4
l2L

7
l2R

8

8

3
l3L

3
l3R

0

8

8

8

yL

Figure 5.3: Example type map joining left and right sides

• The type is not a variable type: In this case, the type itself is returned and it
is expected to be joined by the calling context.

• The type is a variable type which has side Both in the type map: The
type from the type map is returned.

• The type is a variable type but has not yet been joined (either Left,
Right, or both variants are present in the type map): All available variants
(up to two) are retrieved and passed to the type join function (see Section 5.2.3).

5.2.3 Joining a single type pair

Algorithm 2 shows the top-level orchestrator function for joining two types in the context
of a type map. When joining two types, there are first a few base cases to consider:

• If the types are variable types that have already been joined, return Compatible.

• If exactly one of the two is an outer type, fail.

• If both of the types are outer types, continue joining in the parent context (or fail
if no such context exists).

After these cases have been checked, the types are resolved (which, as previously stated,
does nothing if the types are already concrete, but makes sure that beyond this point
there are no more variable types - which, if present, are joined in another call). If this
fails, the failure is passed on to the calling context.

38

5.2. Joining two formulas

Algorithm 2 The top-level join function
1: function Join(left, right, map)
2: if left is Var and right is Var and (left, right) are joined then
3: return Compatible, map
4: else if (left is Outer) 6= (right is Outer) then
5: return Incompatible
6: else if left is Outer(vl, ol) and right is Outer(vr, or) then
7: return Join(Var(vl, ol), Var(vr, or), parent(map))
8: end if
9: left, map ← Resolve(left, map)

10: right, map ← Resolve(right, map)
11: constraintResult ← JoinConstraints(left.constraints, right.constraints)
12: if constraintResult = ⊥ then return Incompatible
13: end if
14: if left is * then return right, map
15: else if right is * then return left, map
16: else if left is Lseg or right is Lseg then
17: result, resultMap ← JoinLseg(left, right, map)
18: else if left is Ptr and right is Ptr then
19: result, resultMap ← JoinPtrs(left, right, map)
20: else
21: result, resultMap ← JoinScalar(left, right, map)
22: end if
23: for all alias ∈ aliases(left) ∪ aliases(right) do
24: result, resultMap ← Join(result, alias, resultMap)
25: end for
26: result.constraints ← constraintResult
27: update left and right to result in resultMap
28: return result, resultMap
29: end function

After resolving types, constraints are joined (see Section 5.2.7). If this is successful, types
are checked for their kind:

• If one of the two types is a wildcard type, the other type is kept literally.

• If one or both types are list segments, the algorithm to join list segments (see
Section 5.2.6) is applied.

• If both types are pointer types, their children are joined (see Section 5.2.5).

• Otherwise, at least one of the types is not spatial, and the types are thus joined by
the algorithm for joining scalar types (see Section 5.2.4).

39

5. The Join Algorithm

Table 5.1: Join matrix for kinds of types, with references to sections explaining the join
where applicable

t1\t2 * ? Outer LSeg Ptr NULL Num(n) Bool(b)
* * t2 ⊥ t2 t2 t2 t2 t2
? t1 ? ⊥ ⊥ abstract NULL Num(?) Bool(?)

Outer ⊥ ⊥ cont. in ⊥ ⊥ ⊥ ⊥ ⊥parent

LSeg t1 ⊥ ⊥ Sec. Sec. ⊥ ⊥ ⊥5.2.6 5.2.6

Ptr t1 abstract ⊥ Sec. Sec. t1 = ∅ ⊥ ⊥5.2.6 5.2.5 → t1

NULL t1 NULL ⊥ ⊥ t2 = ∅ NULL ⊥ ⊥→ t2

Num(m) t1 Num(?) ⊥ ⊥ ⊥ ⊥ Num(n=m) ⊥Num(?)

Bool(a) t1 Bool(?) ⊥ ⊥ ⊥ ⊥ ⊥ Bool(a=b)
Bool(?)

Keep in mind that it is not possible to have variable types here, as they were resolved in
a previous step.

Table 5.1 shows a matrix that gives an overview of how certain kinds of types are joined.

After a type is joined, all of its aliases (found via alias constraints) are updated. If any of
these have not been joined yet (ie. they have Left or Right as their side), the whole join
algorithm is repeated with the result of the current join and the type(s) of the variable
in question to account for alias chains alternating between left and right input variables.

Formally, these rules can be seen in the equations starting at 5.6.

./(tm, t1 = V ar(v, o), t2) (symmetrical for t2) (5.6)
=./ (tm′, t′1, t2) |tm′, t′1 = resolve(tm, t1) (5.7)

./(tm, t1, t2) (5.8)
= Incompatible |exactly one of t1, t2 is outer (5.9)
= ./ (parent(tm), outer(t1), outer(t2)) |both t1 and t2 are outer (5.10)

./(tm, ∗, t2) (symmetrical) (5.11)
= t2 (5.12)

5.2.4 Joining scalars

Joining scalar types (including Null and unknown types) follows a basic set of mostly
intuitive rules, formalized in the equations consecutive to 5.13 and Algorithm 3:

40

5.2. Joining two formulas

Algorithm 3 Function for joining scalars
1: function JoinScalar(left, right, map)
2: if left is Unknown then
3: if right is Ptr then return TryAbstraction(LEFT)
4: else return removeValue(right), map
5: end if
6: else if right is Unknown then
7: if left is Ptr then return TryAbstraction(RIGHT)
8: else return removeValue(left), map
9: end if

10: else if left = right is NULL then return NULL, map
11: else if {left, right} = {NULL, Ptr(∅)} or vice versa then
12: return Ptr(∅), map
13: else if left is Num(l) and right is Num(r) then
14: if l = r then return Num(l), map
15: else return Num(?), map
16: end if
17: else if left is Bool(l) and right is Bool(r) then
18: if l = r then return Bool(l), map
19: else return Bool(?), map
20: end if
21: else return Incompatible
22: end if
23: end function

• When joining Unknown, it is assumed that the other side carries the truth about
the type, and so it is simply carried over. For scalar types that have a concrete
value (number or boolean), this value is removed and an “unknown scalar” type
is returned. When joining Unknown with a pointer, the premature end of a list
segment is assumed, and abstraction is requested.

• Null types can only be joined with Null and empty pointer types (which do not
have a direct representation in formulas and are basically “something that is not
null”), as well as unknown and wildcard types. If a list segment is to be joined
with a pointer to null, its target is joined with null instead (indicating a one-step
segment to null).

• Scalar (number or boolean) types can be joined with other scalar (number or
boolean, respectively) types, but lose their concrete value if it is not equivalent. All
other types (except for unknown) lead to an incompatible join.

This information is also included in Table 5.1. Note that these rules are not necessarily
correct for the missing side of a state - for this problem, see Section 5.3.

41

5. The Join Algorithm

./(tm,Unknown, Scalar(v)) (symmetrical) (5.13)
= tm, Scalar(?) | for int and boolean scalars (5.14)

./(tm,Unknown, P tr(p)) (symmetrical) (5.15)
= tm, TryAbstraction |p 6= ∅ (5.16)

./(tm,Unknown, t2) (symmetrical) (5.17)
= tm, t2 (5.18)

./(tm,Null,Null) (5.19)
= tm,Null (5.20)

./(tm,Null, P tr(∅)) (symmetrical) (5.21)
= tm, P tr(∅) (5.22)

./(tm,Null, Slseg(t, λ)) (symmetrical) (5.23)
= tm′, Slseg(t′, λ) | ./ (tm,Null, t) = (tm′, t′) (5.24)

./(tm, Scalar(v1), Scalar(v2)) for int and boolean scalars (same type) (5.25)
= tm, Scalar(v1) |v1 = v2 (5.26)
= tm, Scalar(?) |otherwise (5.27)

5.2.5 Joining pointers

Joining pointers, as shown in Algorithm 4, is where the algorithm gets recursive. First,
types at offsets available on both sides are joined pairwise, and the sizes of the relevant
fields are joined (which should be straightforward, since they can only be constant or
variables with offsets, and never more complicated types). If two field sizes cannot be
unambiguously joined (e.g. because a block was split between the two states and the field
was shortened), the join fails, since this can only happen a finite amount of times (no
block can be split infinitely often, so chances are high that the analysis will still converge)
and there is nothing to join the leftover memory section (from the now shorter region)
with (since there is no pointer on the side where the section is an unsplit single block).
Then, the parent variables of the pointer types are marked as already joined for pointer
targets to be joined pairwise to avoid endless recursion in case the type references itself.
This can safely be assumed since either there is something else preventing a join in which
case the join will fail anyway, or the join will succeed in which case the assumption that
the variables can be joined is true.

After all relevant offsets have been joined, results are checked for incompatibilities (in
which case this join fails as well) or cases where a join is only possible if abstraction is
applied. In the latter case, abstraction is tried as described in section 5.2.8.

If all child joins are compatible (possibly after abstraction has been done and the join
repeated), keys on both sides are compared, paying regard to offsets possibly “hidden” in
list segments (for example, if a list segment starting at $x+8 defines a pointer from its

42

5.2. Joining two formulas

Algorithm 4 Function for joining pointer types
1: function JoinPtrs(left, right, map)
2: if offsets do not match then
3: if left = ∅ or right = ∅ then return TryAbstraction(whichever side is ∅)
4: else return Incompatible
5: end if
6: end if
7: mark variables for left and right as Joined
8: result ← Ptr(∅)
9: for all offset, group ∈ GroupOffsets(left, right)

10: if Lseg ∈ group then
11: innerResult, map ← JoinLseg(group.left, group.right, map)
12: else
13: innerResult, map ← Join(group.left[offset], group.right[offset], map)
14: end if
15: result[offset] ← innerResult
16: end for
17: if TryAbstraction(side) ∈ result then
18: abstracted ← Abstract(side ? left : right, map, offset in result)
19: return Join(abstracted, side ? right : left, map)
20: else if Incompatible ∈ result then return Incompatible
21: else return result, map
22: end if
23: end function

24: function GroupOffsets(left, right)
25: for all offset ∈ left.offsets do
26: if (lseg ← left[offset]) is Lseg then
27: realOffsets ← lseg.lambda[lseg.src].offsets
28: yield offset, (left[offset], right[realOffsets])
29: else if (lseg ← right[offset]) is Lseg then
30: realOffsets ← lseg.lambda[lseg.src].offsets
31: yield offset, (left[realOffsets], right[offset])
32: else
33: yield offset, ({left[offset]}, {right[offset]})
34: end if
35: end for
36: end function

43

5. The Join Algorithm

lambda source variable $src and one from $src+8, the variable $x has pointers at offset
8 (8+0) and 16 (8+8), even if this might not be immediately evident from the keys of its
type). If a mismatch is detected and one of the sides is an empty type (ie. it does not
have any offsets), abstraction is requested (assuming that this pointer is the end of a
chain and further pointers are simply not known at this point). If neither type is empty
but offsets do not match, the join fails.

If all of the above steps succeed, the join succeeds.

Mathematically, this process can be seen as grouping offsets into subsets according to
their value on the side with the bigger group (where pointers to variables have a group
size of one containing the corresponding offset, and pointers to list segments correspond
to the set of offsets present in the source type of the list segment’s lambda, shifted by the
initial offset). These sets are then split into separate structures, respectively, and their
values are subsequently joined independently of each other (either two variables as usual,
or list segments with a matching pointer structure or another list segment). If an offset
in a group only exists on one side, the join fails. This process is visualized in Figure 5.4.

0 8 16

a b c

0 8

a Slseg(x→y)
Offsets(x): [0, 8]

0 8 16

a b c

8+0
8+8

Slseg(x→y)
Offsets(x): [0, 8]

0

a

Figure 5.4: Joining two pointer types

For example, take the type map in Listing 5.4, joining %l1 and %l2: First, offsets are split
into groups {0} and {8}. For each group, sizes of fields (trivial in this case: 8 ./ 8 = 8)
and targets are joined. %l3 ./ %l5 results in Scalar(?), while %l4 ./ Slseg(...) yields
the same list segment (abstracting the single pointer into the segment). Now, all children
are joined successfully and all offsets match (since the list segment does not define any
additional offsets), and the join succeeds into the map seen in listing 5.5.

The join function rules for joining pointers are summarized in equations starting at 5.28.

44

5.2. Joining two formulas

Listing 5.4: Example type map with pointers
%l2: {
0-(8)->%l5,
8-(8)->Slseg(%l6, lambda(%l1, %l2) {
%l1: {
0-(8)->%l2

}
%l2: *
})

}
%l3: Scalar(10)
%l4: {
0-(8)->%l6

}
%l5: Scalar(11)
%l6: NULL

Listing 5.5: Example joined type map
%l1: {
0-(8)->%l3,
8-(8)->Slseg(%l6, lambda(%l1, %l2) {
%l1: {
0-(8)->%l2

}
%l2: *
})

} (=%l2)
%l2: {...} (=%l1)
%l3: Scalar(?) (=%l5)
%l5: Scalar(?) (=%l3)
%l6: NULL

45

5. The Join Algorithm

./(tm, P tr(p1), P tr(p2)) (5.28)
= tm′′, P tr({(sof ′, tar′)}) |p1 = {(sof1, tar1)}, p2 = {(sof2, tar2)},

(5.29)
|tar1, tar2 are not list segments, (5.30)
| ./ (tm, sof1, sof2) = (tm′, sof ′), (5.31)
| ./ (tm′, tar1, tar2) = (tm′′, tar′) (5.32)

= tmn, P tr(∀(l, r) ∈ pg(p1, p2). (5.33)
./ (tmi−1, l, r)) |tm0 = tm, n = |pg(p1, p2)|, (5.34)

|tmi = type map result from ith join,
(5.35)

|no sub-results are TryAbstraction (5.36)
=./ (tm, P tr(p1 ∪ {o 7→ ls}), P tr(p2)) |offset o requires abstraction (left side w.l.o.g.),

(5.37)
|ls = abstract(tm, o, p1, p2[o]) (5.38)

5.2.6 Joining list segments

When joining list segments, there are two base cases: A list segment is either joined
with another list segment or with an unabstracted pointer type. These two options
are described in this section, starting with the latter. After explaining how to join
singly-linked segments, a short overview of how doubly-linked segments could be joined
is given. The function for joining singly-linked segments can be seen in Algorithm 5.

This last part of the join is formally defined in Equation 5.39 and ones following it:

./(tm, Slseg(a, λ1), Slseg(b, λ2)) (5.39)
= tm′, Slseg(z, λ′) | ./ (λ1 ∪ λ2, λ

src
1 , λsrc

2) = (λ′, src′), (5.40)
| ./ (tm, a, Slseg(b, λ′)) = (tm′, z) (5.41)
|(swap a/b if Incompatible) (5.42)
| ./ (tm, a, b) = (tm′, z) if both Incompatible (5.43)

./(tm, Slseg(a, λ), t2 = Ptr(p)) (5.44)
= ./ (tm′\λ, Slseg(a, λ), t′) | ./ (tm ∪ λ, λsrc, t2) = (tm′, t), (5.45)

|tm′ |= t′ = λdst (5.46)
= tm′, Slseg(a, λ) |join above Incompatible, (5.47)

| ./ (tm, a, t2) = (tm′, t), (5.48)
|list segment previously joined with pointer to t2

(5.49)

46

5.2. Joining two formulas

Algorithm 5 Function for joining list segments
1: function JoinLseg(left, right, map)
2: if left is Ptr then return JoinLseg(right, left, map)
3: end if
4: if right is Ptr then
5: inlined ← map ∪ freshVars(left.lambda)
6: stepResult, stepJoined ← Join(left.src, right, inlined)
7: if stepResult ∈ {Incompatible, TryAbstraction} then return Incompatible
8: end if
9: nextLink ← var from map joined with left.dest

10: updatedMap ← stepJoined \ left.lambda
11: prunedMap ← FilterReachableFromPVars(updatedMap \ right)
12: if prunedMap has pointers to right or right points to a PVar nextLink does

not then . split segment
13: if first join for this lseg then return Incompatible . no empty segments
14: end if
15: splitJoinResult, splitJoinMap ← Join(left, nextLink, map)
16: if splitJoinResult ∈ {Incompatible, TryAbstraction} then
17: return Join(left.target, right, map)
18: end if
19: return (left with dest := right), splitJoinMap
20: else if nextLink already encountered for this segment then . cycle
21: return Incompatible
22: else if nextLink = left.target then return left, prunedMap
23: else return Join(left, nextLink, prunedMap)
24: end if
25: else
26: combined ← left.lambda ∪ freshVars(right.lambda)
27: sourceRes, newLambda ← Join(left.src, right.src, combined)
28: targetRes, newLambda ← Join(left.dest, right.dest, newLambda)
29: if {sourceRes, targetRes} ∩ {Incompatible, TryAbstraction} 6= ∅ then
30: return Incompatible
31: end if
32: outLseg ← right with lambda := newLambda
33: leftLongerRes, leftLongerMap ← Join(left.target, outLseg, map)
34: if leftLongerRes ∈ {Incompatible, TryAbstraction} then
35: outLseg ← left with lambda := newLambda . other target
36: rightLongerRes, rightLongerMap ← Join(right.target, outLseg, map)
37: if rightLongerRes ∈ {Incompatible, TryAbstraction} then
38: return Join(left.target, right.target, map)
39: else return outLseg, rightLongerMap
40: end if
41: else return outLseg, leftLongerMap
42: end if
43: end if
44: end function 47

5. The Join Algorithm

If a singly linked list segment is to be joined with a pointer type, the main challenge is to
verify whether the lambda of the list segment is compatible with the said type and to find
the next link starting from the pointer when this lambda is used. This is accomplished by
taking the lambda, giving all available variables in it fresh names that do not yet occur in
its parent type map and inlining it in the parent type map (while replacing outer types
with their variable type equivalent), calling the join algorithm with the source variable
of the lambda and the pointer type to join. Then, in case this succeeds, the next link
can simply be found by looking at what the lambda destination variable has been joined
with. Four possibilities can occur during this step:

• The join succeeds without a problem, and the link is accepted.

• The join succeeds, but there are pointers into the segment at this point or program
variables would be lost by collapsing this pointer into the segment; in this case, the
segment needs to be split into two.

• When the same situation as in the second option arises, but splitting is not possible
(e.g. because the segment comes from a recent abstraction from a single pointer
and thus cannot possibly be longer than one step), the only thing left to try is to
assume that the current variable is already the end of the segment and to join it
with the target variable of the list segment. This is only possible after at least one
iteration of joining has been successfully performed and one or more pointers have
been collapsed into the segment.

• The join fails, e.g. because there are additional pointers from the given variable.

If the next link is found, the pointer is collapsed into the segment and the algorithm
repeats from the said variable. However, there are now some additional checks to be
done:

• If the variable has already been encountered in the current list segment merge
process, there is a cycle, and the join must fail (since target variables are joined
only after growing a segment fails, and there is no cyclic list predicate without a
target).

• If the current variable is equivalent to the list segment target variable, the end has
been reached and the algorithm can terminate.

An example of joining a singly-linked segment with a pointer can be seen in Figure 5.5.
5.5a shows the original state, after which the list segment is inlined into its parent map
with new variable names l7, l8, and l9 (5.5b). Here, the yellow connections indicate joins
and the yellow circle shows the newly discovered next link (l6). After this, the process is
repeated from the said variable, at which the join fails and l6 is accepted as the segment
end, ie. trivially joined with l4 (5.5c).

48

5.2. Joining two formulas

?
l4

NULL
l2

?
l6

0

8

l3

8

8

80

8

l1
8 NULL

l2

*
l3

(a) Input list segment and
pointer

?
l4

NULL
l2

0

8

l3

8

8

80

8

l1
8 NULL

l2

*
l3

80

8

l7
8 NULL

l8

*

?
l6

l9

(b) Unwrapped list segment

?
l4

?
l6

80

8

l1
8 NULL

l2

*
l3

80

8

l7
8 NULL

l8

*
l9

(c) Unsuccessful join at seg-
ment end

Figure 5.5: Joining list segment with pointer type

In case the segment has to be split, a second list segment is assumed to start at the current
variable, and joining continues from there. If the join fails altogether, the algorithm tries
to join the list segment target variable with the current variable (if allowed) and fails
otherwise.

The other case to consider is two list segments being joined. Here, first, their lambdas
have to be compatible, which is checked by a similar algorithm as before (combining
them into one type map and joining source variables), explicitly joining target variables
(which are known) this time as well. Then there are the three cases in which either one
segment is longer than the other, or they are the same length. Therefore, the algorithm
tries to join one of the segments (the one assumed to be the longer one) with the target
variable of the other (the one assumed to be the shorter one) to try and find the missing
part that assimilates the lengths of the two. If this fails, the other way around is tried.
If neither is possible, the two target variables are joined (assuming the segments are the
same length), or the join fails.

Doubly-linked segments can be joined in a relatively similar way. To join with
a pointer, the segment lambda is inserted into its parent type map, and the current
variable is joined with the pointer type in question to find not only one but possibly
two successor links. In each direction, joining is repeated until impossible, and target
variables are joined. Additionally, backlinks have to be verified for each additional link
to be collapsed into the segment.

Joining two doubly-linked segments is equally similar to the singly-linked case, again
with the modification that joining must commence in two directions instead of only one.

49

5. The Join Algorithm

The remaining question is how to join one singly- with one doubly-linked segment, or if
this should be done at all. The problem here is that naturally, singly linked segments lack
information about a backlink. In practice, however, this could simply mean that such a
link has not been discovered before abstraction has been applied; during join, there is
however no way of knowing if this was the case, or if the link really is not there for a
certain state. Therefore, joining two such states should yield an incompatible result.

5.2.7 Joining constraints

Joining constraints follows a simple set of rules:

• The join cannot introduce an equality between program variables (directly or via
aliases) that was not previously there.

• Null, not-null, constant value and inequality constraints present only on one side
are discarded, except for the case where both sides have a distinct constant value
(in which case the join fails).

• All other constraints are directly inherited.

The pseudocode for this procedure can be seen in Algorithm 6.

Algorithm 6 Function for joining constraints
1: function JoinConstraints(left, right)
2: if (left ∪ right) introduces alias between PVars (transitively) then return ⊥
3: else if Const(x) ∈ left and Const(y) ∈ right and x 6= y then return ⊥
4: else
5: filtered ← {Null, NotNull, Const(*), NotEq(*)}
6: return ((left ∪ right) \ filtered) ∪ (left ∩ right)
7: end if
8: end function

This, as for some cases in Section 5.2.4, is not necessarily correct on both sides of a state,
but has proven to be effective in real-life scenarios - see Section 5.3.

5.2.8 Abstraction

Abstraction is tried in cases where one side contains pointers and one side does not,
assuming that this indicates pointers in a list segment that have not been traversed and
are thus not yet known. This can happen in the case where the unknown side has the
unknown type, or where it has an empty pointer type (ie. it is known that this is a
pointer, but not what it points to). In such cases, a lambda is synthesized as described
in this section and the join continues with the corresponding list segment.

50

5.2. Joining two formulas

To synthesize a new lambda, the original type map is taken and the current variable is
marked as the source variable. The type of the destination variable is replaced with the
wildcard type (which can be joined with anything). Then, all variables not reachable
from the source variable (that are, therefore, not relevant for the lambda), as well as
aliases (not necessary inside of a lambda because there can be no program variables),
are dropped. In addition, all further occurrences of the start variable are replaced with
an outer variable pointing to the list start under the assumption that pointers back to
the list start are common (and cycles inside of a lambda cannot be handled properly
anyway). This is described in Algorithm 7.

Algorithm 7 Function for abstraction
1: function Abstract(type, map, offset)
2: result ← Slseg
3: result.lambda ← map
4: result.lambda[type[offset]] ← *
5: result.lambda ← ReachableFrom(result.lambda, type)
6: result.lambda ← RemoveAliases(result.lambda)
7: result.lambda ← result.lambda{type 7→ Outer(type)}
8: result.src ← type
9: result.dest ← type[offset]

10: result.target ← type[offset]
11: return result
12: end function

This is, of course, an abstraction that makes a set of assumptions that might not be true
in every case. Most prominently, all abstractions produce singly linked segments, and
lambdas that step over more than one pointer (e.g. for loops that go two steps for each
iteration) will not be found. However, wrong results will be discarded during validation
as described in section 5.3, causing the join to fail (since the right assumptions could not
be made anyway).

This newly created list segment is added to the host type map in stead of the first
pointer of the shorter segment, and the algorithm for joining list segments with pointers
is applied.

Figure 5.6 shows an example of how a list segment is generated. Abstraction is requested
for l3 in 5.6a, so all variables not reachable from l3 (l1, l4, l5, l7) are dropped. l3 is
selected as the source variable (being the abstraction source), and the pointer target at
the respective offset (where abstraction has been requested from), l6, as the segment
target. This results in the segment seen in 5.6b.

Formally, the abstraction function can be seen in Equation 5.50.

abstract(tm, o, p1, p2) = Slseg(p1[o], reachable(tm, p1[offsets(p2)]){p1 → p1[o]}) (5.50)

51

5. The Join Algorithm

NULL
l2

?
l6

0

8

l3

8

l5

8

80

8

16

l1

8

NULL
l4

17
l7

8
8

8

Abstraction
Border

(a) Input type map

NULL
l2

8
8

0

8 l6
*

(b) Output list segment

Figure 5.6: Example abstraction

5.2.9 Example

For example, take the two input type maps from Figure 5.7, representing a single step
in a loop iterating through a linked list (x→ l3(→ l4)→ l7). The pairs connected via
yellow lines are attempted to be joined, starting at x and propagated through pointers
at matching offsets. For l1, l2, and l5, this is straightforward, but ll3 and lr7 cannot be
directly merged, so abstraction is requested.

RightLeft

0

8

x
0

l1

8

NULL
l2

8

?
l7

0

8

l3
8

8

NULL
l5

8
0

8

x
0

l1

8

NULL
l2

8

?
l7

0

8

l3
8

0

8

l4

8 8

NULL
l6

8

NULL
l5

8

Figure 5.7: Example join input

The problematic pointer on the left (shorter) side is replaced with the corresponding list
segment, as can be seen in Figure 5.8. Starting from its origin variable l1, the lambda of
the list segment is joined with the corresponding pointer on the opposite side to determine

52

5.2. Joining two formulas

the next link, with l4 as a result. This is repeated to get the link to l7. Another try
fails (since there is no link from l7), and so targets (ll7 and lr7) are joined. This trivially
succeeds, so the pointers lr3 → l4 → l7 are collapsed into the generated list segment. l5
is now not referenced anymore, so the variable is removed. Since all of x’s children are
joined, joining x is also done, and the type map is finally joined into figure 5.9.

Joined

NULL
l2

l5

Left

*80

8

l1
8 NULL

l2

l3 ?
l7

l7

8
0

8

x

?
l7

0

8

l3
8

0

8

l4
8

8
8

8

Right

NULL
l6NULL

l1
0

8
0

8

x

8

8

Figure 5.8: Example join after abstraction

Note that the list segment could be extended one link further in the beginning, in which
case the second pointer (at offset 8) would have to be abstracted to a nested list segment
(x→ l1 → l2 / l1 → l2); since this is not required for the join to succeed, however, the
pointers are left as-is.

Joined

0

8

x

*80

8

l1
8 NULL

l2

l3 ?
l7

l7

l1
0 NULL

l2
88

8

Figure 5.9: Example join result

53

5. The Join Algorithm

5.2.10 Converting back

When a joined type map is available, it has to be converted back to a Broom formula;
this is done for the missing and the current part separately.

First, points-to- and list-segment predicates are generated for all variables that have a
pointer type (remember that list segments are always children of pointer types). If there
is a “more important” variable (where named program variables are more important than
special logical variables, which in turn are more important than logical variables; in each
of these three groups, variables with a lower number are more important), no predicates
will be generated (since an expression indicating equivalence to this variable suffices).
Then, first, all child list segments are converted to list segment predicates, using the
algorithm recursively for the lambda. Furthermore, outer types are replaced with fresh
variables, which are inserted as parameters for the lambda. All offsets that are duplicated
between the source variable in the lambda and the parent pointer type are discarded,
except for where the parent points directly to a program variable. In the latter case, it is
assumed that the last link of the list segment points to this program variable (ie. it is
a pointer updated to the current position in every loop iteration), and the segment is
unrolled once (this is verified later, see Section 5.3). All other members of the pointer
type are converted directly to points-to-predicates in a straightforward way. Since the
join at the time of writing will never emit complex types as pointer targets (but only
scalar or variable types which may hide complex types), recursion is not necessary at
this point.

Then, constraints are converted to expressions after being deduplicated between equivalent
variables just like for spatial predicates. This is a very straightforward process that
simply maps the different constraints to expressions (e.g. a constant or an alias constraint
will become an equivalence, and a not-null constraint will become an inequivalence). In
this step, the necessary equivalences for previously ignored “less important” variables are
introduced. Here, also equivalences between program variables and logical variables only
present on the other side (missing or current) are re-introduced from the original type
map so as not to lose any connection between related variables from the pre- and the
postcondition. For example, a list segment might have a logical variable as its target in
the missing part, while in the current part, this variable is concretized in the form of a
program variable, including an equivalence between the two variables. Simply emitting
a list segment to the program variable, even though correct when only considering one
side, drops the connection to the precondition, so the equivalence has to be included in
the final output.

Lastly, types not handled previously (scalar, variable, and wildcard types) are converted
to expressions. As for constraints, this is a simple mapping process.

All spatial predicates and expressions generated are then combined into a formula and
returned.

54

5.3. Validating output

5.3 Validating output
While most operations during the join process are correct on their own (and their result
could simply be used straight away), some of the transformations take a few more
liberties for the sake of speed and simplicity (which will in most cases be correct, but
not necessarily). In addition, there might be some expressions the join simply cannot
understand, which will then be copied to the output formula and verified only in the end
(expression constraints).

To verify a join result, first, both the missing and current formula are checked for
satisfiability using the solver, since an unsatisfiable formula can in no case be a sensible
join result. If these checks succeed, the join is checked for correctness by checking for
entailment between the two old and the new formulas. Only if this succeeds will the join
return a result; otherwise, it will simply return Incompatible.

5.4 Entailment
Even after a successful, validated join, this does not mean that a fixed point for a loop
has been found (since information is possibly lost during the join). Furthermore, some
course of action has to be taken for states that could not be joined. Therefore, employing
entailment somewhere in the process seems like a very natural move.

Experiments have shown that the best results can be reached by using one run of
entailment before any joining is done to remove all potential fixed points, and another
run on join results for further pruning. If the entailment before the join is not done, in
some cases, cycles of joined states can occur that yield the exact same successor states
after every loop iteration (and therefore the same join inputs and results) which cannot
be pruned after the join, so the system never detects that a fixed point has been reached.

55

CHAPTER 6
Implementation

Figure 6.1 contains an overview of the most important parts of the join algorithm in
the form of a call graph of the Biabd.Join OCaml module. Joining starts at the top
(join_states) and continues along the edges, depending on the structure of the input
data.

First, get_all_types constructs a type map by retrieving types for all available variables.
This type map is passed to merge_all_types, which resolves all program variables and
anchors using merge_get_type_from_resolved. This function is initially called with a
variable type for the corresponding variable, but later also serves as an abstraction layer to
be able to simply retrieve a type and guarantee that it is complete. This function, as well
as most below it, returns a type result as introduced in Section 5.2.2 (Incompatible,
Type, TryAbstraction, or Compatible for all functions other than the resolve function).

Biabd.Join.types_to_formula takes a merged type map and its original (unmerged)
counterpart (to make sure no variables are incorrectly reused) and returns a formula to
be used in the resulting state, once for the missing and once for the current part.

57

6. Implementation

join_states

get_all_types

get_var_type

types_to_formula
merge_all_types

merge_single_var

merge_get_type_from_resolved

merge_types_with_parents

merge_type

merge_with_lseg

merge_with_scalar_type

merge_constraints

try_abstraction

If pointer type

For all program variables

With types With merged map

For each variable

Child types

If ≥1 list
segment

If ≥1 scalar

If abstraction requested
by child join

Merge
unmerged Resolve

Try again with
abstracted

Join
lambda

Until
segment

end

Figure 6.1: Overview of the algorithm in the form of a call graph

58

CHAPTER 7
Considered Variations

During development, a few variations in how joining is done have been considered and
evaluated by comparing analysis results. For all of them, one option proved to clearly
outdo the others, with the alternatives providing strictly worse or even incorrect results.
This chapter introduces the substantial alterations considered and gives reasons as to
why the current approach was chosen for the respective aspect.

7.1 Joining pointers with null
A main discussion point is how variables should be handled that have a valid pointer
type on one side (possibly even with a not-null constraint) and that are null on the other.
Other frameworks, like Predator[HKP+16], have explicit nullable types for these cases
(called 0/1 abstract objects in Predator); this is not supported by Broom. Therefore, the
base options here are to either lose the information that a variable can be null (simply
dropping the null constraint) or to disallow joining in this case. A third option, which
has been implemented and has yielded the best results, is to only allow such a join if the
pointer type is empty, ie. nothing about its targets is known. This way, no one-sided
pointers end up in the join result (offsets only present on one input side), but joining
does not automatically fail simply because some variable is null (often because it is
uninitialized).

7.2 Joining list segments with null
Similar to pointers, one could argue that joining list segments with null should not be
possible in order not to create any empty segments. Furthermore, the list of offsets of a
list segment can never be empty, since there has to be a link to the next element. Indeed,
Broom does not allow empty segments, so joining one with null should not be possible.
Joining a list segment with a pointer to null, however, is a different story: Here, a link is

59

7. Considered Variations

present (the pointer itself), and so if the rest of the lambda matches the source pointer
type, a join is possible. This also leads to the next question, which is whether to try
abstraction when a non-empty pointer is joined with null (making it possible to join null
with the newly created list segment) or if the algorithm should simply fail in such a case.

7.3 Abstracting on pointer + null
As mentioned in section 7.2, a possibility is to request abstraction from the parent
structure if a pointer type is to be joined with null, and to collapse both (the single-step
segment to null as well as the multi-step segment containing the non-empty pointer type)
into the subsequently created list segment. In theory, this sounds like a convincing idea,
and results are certainly no less correct than when abstracting at any other arbitrary
point (like what is done when the join algorithm is not used). However, enabling this
interestingly causes results to degrade greatly because of wrong abstractions, which is
not a problem if the same process is only allowed for unknown instead of null types.
This is likely because many variables are initialized with null and held in some parent
structure, but are in reality not part of any list segments. Unknown types, on the other
hand, mostly occur when a pointer has not yet been discovered, usually as part of a loop
(which usually iterates over some kind of list-like structure).

7.4 Shared expressions in abstraction
List segments allow for shared expressions, ie. expressions that are globally shared
between all links in a segment. During abstraction, a choice has to be made as to
which variables to include directly in the lambda and which ones to reference via shared
expressions (or, during join, outer variables). Options here are to inline all variables,
share a certain class of variables (such as all pointers not directly related to getting to
the next list entry), or share variables related to the segment in a certain way. In tests, it
became apparent that pointers back to the list head can be relatively common; therefore,
references to the source variable are converted to outer variables during abstraction while
all other types are added directly to the lambda.

7.5 Only allowing correct joins
Lastly, a big question during the whole project was how to get join results to be correct.
The two relevant alternatives here are to either check the result with a solver (as is
done in the final version) or to make all operations during join provably correct. The
latter, however, would mean that either a lot of information is lost (with the output state
containing the intersection of information from the input), or most if not all joins are not
possible (failing joins as soon as too much information is lost). Therefore, accepting the
overhead of a solver check has been chosen as the superior option.

60

CHAPTER 8
Evaluation

The implementation of the join operator for Broom has been evaluated to grade the
result quality both during implementation (to support choices made in the design of
the algorithm, as explained in Chapter 7) and for the final result. This section presents
evaluation results for the final join algorithm compared to the base case - Broom without
a join operator, as introduced in Chapter 3. First, an overview of how comparisons were
done is given in Section 8.1; the subsequent sections show comparisons between the two
implementations categorized by different features. Finally, in Section 8.5, inputs that
produce notably different results between the two approaches are listed and potential
causes for the differences are explained.

The metrics used for comparison are the total runtime and memory usage of the Broom
process per file analyzed, the number of join points encountered per file or function, as
well as the quality of results, where a case in which a correct contract is found is better
than one without it, just like for cases where a more specific postcondition or a less specific
precondition in an otherwise equivalent contract is synthesized. Semantically equivalent
contracts are equally good. For all other cases, contracts are considered incomparable;
however, this situation has not occurred during evaluation.

8.1 Benchmark suite
To be able to evaluate the algorithm sensibly, a good input data set is required. There are
many benchmark suites for various purposes readily available online; however, a choice
was made here to use a very specific set of input programs rather than a generic set.
Analysis done by Broom and thus cases relevant for the join operator are rather specific
to linked lists; in generic data sets, a majority of cases would not yield a result since
Broom is not built to handle the patterns encountered there. Instead, the test set used is
one used for other tests with Broom before and is included in the repository[HPR+19]
under the tests folder. Here, there are functions specifically crafted for certain cases

61

8. Evaluation

(which enables checking for specific improvements - for example, a function that traverses
a linked list or a function that creates one, but also more complex examples), alongside
code from real-world projects that rely heavily on linked lists, including part of the
Linux kernel or several allocators (that keep track of allocated blocks in linked-list-like
structures), like tinyalloc or the FreeBSD implementation for malloc.

Altogether, this adds up to 119 C files, with 572 functions in 7038 lines of code (excluding
blank lines and comments, as well as files with no join points).

8.2 Number of join points

The first relevant statistic considered is whether the join operator can decrease the
number of loop iterations needed to arrive at a stable state, ie. how many times the
analysis arrives at a join point. Interestingly, this number varies relatively little, with
only 12 of the examples indicating any difference at all - seven of them needing more
and five of them less join points. In the cases where fewer joins are needed, the same
contracts are synthesized in all cases. For the examples where more joins are needed,
some produce the same results (3), but in a few cases, the output now contains contracts
not previously found, indicating that the additional joins are in reality a positive thing
needed for better results.

8.3 Runtime

The second feature to compare between the two variants is the runtime needed to calculate
final contracts. All benchmarks here were done on a computer with an AMD Ryzen 9
3900X processor and 64 Gigabytes of RAM running openSUSE Leap 15.4 (kernel 5.14.21
/ 64 bit) in a Docker container based on ubuntu:22.04 (from the Dockerfile included in
the Broom repository) with OCaml version 4.09.1. Measurements were taken using time
-v, executing Broom with and without the --join flag and default parameters otherwise
(most notably an entailment limit, ie. the limit of how many runs through a loop are
done, of five).

Out of the 119 input files, 7 (6%) completed noticeably faster when run with the join
algorithm than without, 5 (4.2%) of them with a speedup of more than 10%. However,
42 (35%) of the files took more than 10% longer than before. This is to be expected since
a failed join takes quite a lot of time without any contribution to the analysis process. A
graph summarizing the time comparisons per input file can be found in Figure 8.1. This
shows that while the execution time is in general higher, there are some cases where an
improvement can be observed.

As for memory usage, results are similar but differences are in most cases less drastic
than for execution time. Here, only six (5%) input files used more than 10% less memory,
and only 14 (13%) files needed more than 10% more. A comparison for including the

62

8.3. Runtime

102 103

Without Join (ms, log scale)

102

103

W
ith

 Jo
in

 (m
s,

lo
g

sc
al

e)

Speedup
Equal time
10% higher
10% lower

Figure 8.1: Execution time with and without the join algorithm

different input files can be found in Figure 8.2. All numbers are for the entire Broom
process including calls to the solver.

1063 × 105 4 × 105 6 × 105

Without Join (KB, log scale)

106

3 × 105

4 × 105

6 × 105

2 × 106

W
ith

 Jo
in

 (K
B,

 lo
g

sc
al

e)

Memory usage ratio
Equal memory usage
10% higher
10% lower

Figure 8.2: Maximum memory usage with and without the join algorithm

All examples where a significant difference in either of the two metrics was observed can
be seen in Table 8.1, together with concrete values for these features.

63

8. Evaluation

Table 8.1: Time and memory consumption comparison

File Time (sec) Memory (KB)
./ ��./ Ratio ./ ��./ Ratio

sll-shared-sll-before.c 55.90 100.04 0.56 320264 323640 0.99
sll-shared-sll-after.c 65.01 105.31 0.62 334564 376188 0.89
intrusive-list-top.c 518.07 767.69 0.67 463676 868104 0.53
linux-list.c 200.97 253.09 0.79 500508 520784 0.96
test-0233.c 52.90 66.38 0.80 400220 439868 0.91
test-0192.c 58.56 55.02 1.06 492136 420608 1.17
intrusive-list-minimal-example2.c 69.98 62.52 1.12 354908 337372 1.05
intrusive.c 64.00 56.72 1.13 379504 327692 1.16
sll.c 74.01 65.44 1.13 351076 339628 1.03
sll-main_gcc.c 82.76 73.05 1.13 376920 339688 1.11
sll-main.c 74.25 65.51 1.13 371500 340604 1.09
dll-fst-data.c 321.22 276.56 1.16 691592 695324 0.99
linux-hlist-fst-data.c 823.22 697.61 1.18 846600 825500 1.03
linux-hlist-lst-data.c 1151.04 963.87 1.19 1237484 1513716 0.82
predator-test-0156-no-include.c 125.27 103.20 1.21 521536 477788 1.09
sll-shared-after.c 234.70 189.44 1.24 382664 412564 0.93
dll-middle-data.c 675.83 541.38 1.25 998520 1144448 0.87
predator-test-0156.c 128.05 102.11 1.25 469568 453064 1.04
call-01-ok_gcc.c 85.78 66.90 1.28 511672 405320 1.26
dll-trans_gcc.c 59.29 45.70 1.30 342452 368528 0.93
dll-lst-data.c 322.52 247.61 1.30 632632 631308 1.00
dll.c 78.17 59.16 1.32 342272 352908 0.97
linux-list-lst-data.c 913.20 679.64 1.34 1514428 1614460 0.94
linux-list-fst-data.c 716.41 525.93 1.36 1123048 926724 1.21
sll-nested-sll-inline.c 215.23 158.00 1.36 444408 449752 0.99
dll-trans.c 58.80 43.04 1.37 340368 368836 0.92
tinyalloc–orig.c 2666.60 1949.66 1.37 1114072 1168068 0.95
sll-shared-before.c 135.33 97.31 1.39 373380 365836 1.02
sll-nested-sll-lst-data.c 1886.19 1355.43 1.39 1722976 950624 1.81
new_malloc–orig.c 414.13 295.97 1.40 2357280 1618036 1.46
linux-hlist-middle-data.c 1449.46 1021.32 1.42 1421792 1482892 0.96
dll-backwards.c 174.59 119.88 1.46 401712 400468 1.00
sll-lst-data.c 264.06 176.60 1.50 520684 456416 1.14
new_malloc–simplified.c 431.73 288.54 1.50 1456412 1374516 1.06
dll-lst-shared.c 530.22 354.14 1.50 595672 606824 0.98
tinyalloc–simplified.c 2820.79 1858.92 1.52 1181744 1125384 1.05
sll.c 66.02 43.38 1.52 337136 352028 0.96
linux-list-middle-data.c 1447.41 943.87 1.53 2306968 1629796 1.42
sll-lst-shared.c 499.21 324.37 1.54 588448 712976 0.83

64

8.4. Result quality

Table 8.1: Time and memory consumption comparison

File Time (sec) Memory (KB)
./ ��./ Ratio ./ ��./ Ratio

linux-list-t1+traverse.c 108.61 69.29 1.57 392764 398916 0.98
sll-middle-data.c 631.27 394.78 1.60 871932 861844 1.01
sll-fst-shared.c 383.68 236.15 1.62 580504 555804 1.04
dll-fst-shared.c 518.36 316.81 1.64 623764 695536 0.90
sll-fst-data.c 365.38 210.08 1.74 609824 543048 1.12
linux-list-traverse.c 94.94 54.56 1.74 383256 363904 1.05
sll-middle-shared.c 1652.06 942.61 1.75 896108 929916 0.96
sll-headptr.c 93.77 48.86 1.92 410364 349332 1.17
sll-shared-sll.c 362.95 84.38 4.30 519888 360836 1.44

The most probable explanation for longer execution times is that a lot of joins are
performed, most or all of which are unsuccessful. If, in addition, failure is detected late
in the algorithm (after a lot of variables have already been joined), a lot of time is used
without any gain.

Examples that are faster with the join algorithm can be explained with the fact that
joined formulas are both more concise (filtering out unnecessary clauses), possibly making
it easier for the solver to work with them, and that there are fewer formulas to begin
with, resulting in the symbolic execution procedure to be called fewer times. In addition,
in two of the cases loops terminate in fewer iterations, eliminating the need to run all
parts of the system (symbolic execution, bi-abduction,. . .) again.

8.4 Result quality

With the previous evaluation criteria being how fast a result is reached (in time or the
number of operations), the other important aspect is the quality of results, ie. which
contracts are found and which ones are not. This section gives a quantitative overview,
while the next one talks about the most important differences.

As expected, the contracts generated with and without the join algorithm are the same
for most functions; in total, there are 22 functions with differing contracts. Two of these
functions have contracts that are semantically the same but differ syntactically, for two
functions contracts are found with an entailment limit of five where this is not possible
without the join, and for the others, additional contracts are returned (28 contracts in
total).

It is also worth noting that with an older version of Broom, contracts used to be lost in
certain cases; this is discussed in Section 8.5.1.

65

8. Evaluation

8.5 Notable differences
This section explains some of the most interesting differences encountered in the analysis
output and tries to give reasons as to how they came to be. In addition to the contracts
given below, contracts for calling functions (e.g. a main function calling a list creation
function) could in some cases be found, now that all called functions had valid contracts;
these cases are trivial and thus not discussed in further detail.

8.5.1 Nested lists

The most problematic case during the evaluation of the join algorithm arose when
analyzing functions traversing nested lists: For the second level (counting from the
innermost list), additional slightly wrong (unsound) contracts were generated (with an
additional step in the list, expressed using points-to-predicates, only on one contract
side), which leads to the system not being able to generate any contracts at all for all
further nesting levels.

The explanation for this is the fact that variable scoping was not implemented in Broom
at the time of analysis (or rather only on a function level); this leads to the join being
forced to unwrap the last list segment (since it has a pointer to the current inner list,
which is, however, not even needed anymore and could simply be dropped), which results
in an explicit additional segment during the second run (ie. only in the postcondition).
Indeed, after a live variable analysis was added to Broom and dead variables were removed
from states (ie. converted to logical variables), this problem was solved.

8.5.2 List destruction

One of the main improvements the join algorithm was able to achieve was during the
analysis of list deallocation functions. For example, for the sll_clear function in Listing
8.1, previously no contracts could be found; with the join algorithm, however, the two
contracts in Listing 8.2, one for an empty list and one for non-empty ones, are generated.

This is because two successor states in the list are joined into a single state with a list
segment where entailment itself repeatedly does not prune the new state, presumably
because of an additional pure predicate for the new link that is simply filtered out during
the join (where information is lost, but the state is still verified to be correct). Then,
after this join succeeds, this entailment does as well (on the join result instead of the
initially generated state), marking the state as stable and leading to the termination of
the loop.

66

8.5. Notable differences

Listing 8.1: sll_clear function
s t r u c t s l l_ i t em {

s t r u c t s l l_ i t em ∗next ;
i n t data ;

} ;
void s l l _ c l e a r (s t r u c t s l l_ i t em ∗∗ p l i s t)
{

s t r u c t s l l_ i t em ∗p = (∗ p l i s t) ;
whi l e (p != NULL) {

s t r u c t s l l_ i t em ∗next = p−>next ;
f r e e (p) ;
p = next ;

}
(∗ p l i s t) = NULL;

}

Listing 8.2: Contracts for sll_clear (shortened for brevity)
Count of Contract EVARS:5
LHS:%c1-(8)->%c2 & (%mF14:plist_anch=%c1) & (%c2=NULL) & ...
RHS:%c1-(8)->%c5 & (%mF14:plist_anch=%c1) & (%c5=NULL) & ...
Prog. VARS moves:
Count of Contract EVARS:14
LHS:%c1-(8)->%c2 *
Slseg(%c2,%c11,lambda[%l6,%l10]:{

%l6-(8)->%l10 * %l1-(%l2-8)->Undef &
(%l6!=NULL) & (base(%l6)=%l6) & (len(%l6)=%l2) & (base(%l6)=base

(%l1)) & (%l1=(%l6+8)) & ...
},[]) &
(%mF14:plist_anch=%c1) & (%c2!=NULL) & (base(%c2)=%c2) & (base(%c2)=

base(%c5)) & (%c5=(%c2+8)) & (%c11=NULL) & ...
RHS:%c1-(8)->%c14 & (%mF14:plist_anch=%c1) & (base(%c2)=base(%c5)) & (

%c5=(%c2+8)) & (%c2!=NULL) & (base(%c2)=%c2) & freed(%c2) & (%c11=
NULL) & (%c14=NULL) & ...

Prog. VARS moves:

67

CHAPTER 9
Conclusion

While shape analysis can certainly work using only opportunistic abstraction and en-
tailment via a solver at join points, in some cases having a join operator that unifies
formulas based on their structure and applies abstraction intelligently can result in better
outcomes. Results do, though, vary greatly depending on the exact parameters and
rules used for joining, where in many cases the effects are far more negative than for
others, so choices for such an algorithm have to be made carefully and evaluated on
real-world examples. While join points have been analyzed extensively for other types
of analyses, literature on joining during shape analysis is relatively scarce, with only a
handful of approaches described and evaluated, each implemented as part of a certain
analysis ecosystem.

The algorithm described in this thesis and implemented as part of the Broom project
yields improved results, as confirmed with a test set of characteristic examples. The
operator enhances the analysis process, and even in cases where no improvement is
observed, the downsides are usually only minor and the results are mostly equivalent to
the base case. Nevertheless, such an operator cannot work wonders and in many cases,
no function contracts can be found still.

In addition to the algorithm used when joining, integration into the analysis system plays
an important part in ensuring good outcomes. Steps such as abstraction or pruning
formulas can occur before, after, or even during the join, with greatly varying levels
of success. In addition, entailment can immensely aid and simplify the join process by
proving correctness or finding redundant states.

69

CHAPTER 10
Future Work

Based on the work in this thesis, an important point to be implemented and evaluated
is the joining of doubly-linked list segments; how such an algorithm might look has
been introduced above. Here, an important point is to analyze the effects of such an
implementation, just like what was done for singly-linked segments here.

In addition, some research might be done on how to join more than two states at once,
if applicable. This is also closely intertwined with the question of which states to join,
which was answered in a relatively short manner in this thesis. With some additional
research, answers to these questions might bring additional improvements to the process.

71

List of Figures

4.1 Null is never joined with an object . 25
4.2 0/1 abstract objects can be joined with null 25
4.3 Objects can be collapsed into list segments 26
4.4 Program vars need to be preserved . 26

5.1 Type hierarchy for join types . 32
5.2 Graph representation of example type map 36
5.3 Example type map joining left and right sides 38
5.4 Joining two pointer types . 44
5.5 Joining list segment with pointer type . 49
5.6 Example abstraction . 52
5.7 Example join input . 52
5.8 Example join after abstraction . 53
5.9 Example join result . 53

6.1 Overview of the algorithm in the form of a call graph 58

8.1 Execution time with and without the join algorithm 63
8.2 Maximum memory usage with and without the join algorithm 63

73

List of Tables

5.1 Join matrix for kinds of types, with references to sections explaining the join
where applicable . 40

8.1 Time and memory consumption comparison 64
8.1 Time and memory consumption comparison 65

75

List of Algorithms

1 The resolve function . 37
2 The top-level join function . 39
3 Function for joining scalars . 41
4 Function for joining pointer types . 43
5 Function for joining list segments . 47
6 Function for joining constraints . 50
7 Function for abstraction . 51

77

List of Listings

1.1 Example linked list loop . 3
1.2 Types for the example states (shortened) 5
3.1 Signature of a singly-linked list segment 14
3.2 Example lambda . 15
3.3 Signature of a doubly-linked list segment 15
3.4 Formal grammar of Broom formulas in EBNF 16
3.5 Example formula in Broom . 16
5.1 Example type map for pointer type . 34
5.2 Example input formula . 35
5.3 Example output type map . 35
5.4 Example type map with pointers . 45
5.5 Example joined type map . 45
8.1 sll_clear function . 67
8.2 Contracts for sll_clear (shortened for brevity) 67

79

Bibliography

[Atk10] Robert Atkey. Amortised resource analysis with separation logic. In European
Symposium on Programming, pages 85–103. Springer, 2010.

[BBB+22] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina
Niemetz, Andres Nötzli, et al. cvc5: A versatile and industrial-strength
SMT solver. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 415–442. Springer, 2022.

[BBC08] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of
program termination in separation logic. ACM SIGPLAN Notices, 43(1):101–
112, 2008.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W
O’hearn, Thomas Wies, and Hongseok Yang. Shape analysis for composite
data structures. In Computer Aided Verification: 19th International Con-
ference, CAV 2007, Berlin, Germany, July 3-7, 2007. Proceedings 19, pages
178–192. Springer, 2007.

[BIP10] Marius Bozga, Radu Iosif, and Swann Perarnau. Quantitative separation logic
and programs with lists. Journal of Automated Reasoning, 45(2):131–156,
2010.

[CDOY06] Cristiano Calcagno, Dino Distefano, Peter W O’Hearn, and Hongseok Yang.
Beyond reachability: Shape abstraction in the presence of pointer arithmetic.
In Static Analysis: 13th International Symposium, SAS 2006, Seoul, Korea,
August 29-31, 2006. Proceedings 13, pages 182–203. Springer, 2006.

[CDOY11] Cristiano Calcagno, Dino Distefano, Peter W O’hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. Journal of the ACM
(JACM), 58(6):1–66, 2011.

[Chl11] Adam Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, pages 234–
245, 2011.

81

[CL20] Christopher Curry and Quang Loc Le. Bi-Abduction for Shapes with Ordered
Data. arXiv preprint arXiv:2006.10439, 2020.

[CLQ19] Christopher Curry, Quang Loc Le, and Shengchao Qin. Bi-abductive inference
for shape and ordering properties. In 2019 24th International Conference on
Engineering of Complex Computer Systems (ICECCS), pages 220–225. IEEE,
2019.

[Cop14] Patrick T Copeland. Using State Merging and State Pruning to Address the
Path Explosion Problem Faced by Symbolic Execution. 2014.

[CRN07] Bor-Yuh Evan Chang, Xavier Rival, and George C Necula. Shape analysis
with structural invariant checkers. In International Static Analysis Symposium,
pages 384–401. Springer, 2007.

[DDZ94] David Detlefs, Al Dosser, and Benjamin Zorn. Memory allocation costs in
large C and C++ programs. Software: Practice and Experience, 24(6):527–542,
1994.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[DMP+13] Kamil Dudka, Petr Muller, Petr Peringer, Veronika Šoková, and Tomáš
Vojnar. Algorithmic Details behind the Predator Shape Analyser Based on
Symbolic Memory Graphs. 2013.

[DOY06] Dino Distefano, Peter W O’hearn, and Hongseok Yang. A local shape analysis
based on separation logic. In Tools and Algorithms for the Construction and
Analysis of Systems: 12th International Conference, TACAS 2006, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25-April 2, 2006. Proceedings 12, pages
287–302. Springer, 2006.

[DPV11] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Predator: A practical
tool for checking manipulation of dynamic data structures using separation
logic. In Computer Aided Verification: 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings 23, pages 372–378.
Springer, 2011.

[DPV13] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Byte-precise verification of
low-level list manipulation. In Static Analysis: 20th International Symposium,
SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings 20, pages
215–237. Springer, 2013.

[DPV14] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Predator: A Shape Ana-
lyzer Based on Symbolic Memory Graphs: (Competition Contribution). In

82

International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 412–414. Springer, 2014.

[DVP+16] Kamil Dudka, Tomáš Vojnar, Petr Peringer, Petr Müller, Veronika Šoková,
and Michal Kotoun. Predator. http://www.fit.vutbr.cz/research/
groups/verifit/tools/predator/, 2016. Accessed: 2024-02-10.

[HKP+16] Lukáš Holík, Michal Kotoun, Petr Peringer, Veronika Šoková, Marek Trtík,
and Tomáš Vojnar. Predator shape analysis tool suite. In Hardware and
Software: Verification and Testing: 12th International Haifa Verification
Conference, HVC 2016, Haifa, Israel, November 14-17, 2016, Proceedings 12,
pages 202–209. Springer, 2016.

[HPR+19] Lukáš Holík, Petr Peringer, Adam Rogalewicz, Veronika Šoková, Tomáš
Vojnar, and Florian Zuleger. A Static Analyzer for C Based on Separation
Logic and the Principle of Bi-Abductive Reasoning. https://pajda.fit.
vutbr.cz/rogalew/broom, 2019. Accessed: 2024-02-03.

[HPR+22] Lukáš Holík, Petr Peringer, Adam Rogalewicz, Veronika Šoková, Tomáš Voj-
nar, and Florian Zuleger. Low-Level Bi-Abduction. In Karim Ali and Jan
Vitek, editors, 36th European Conference on Object-Oriented Programming
(ECOOP 2022), volume 222 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 19:1–19:30, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[HSS09] Trevor Hansen, Peter Schachte, and Harald Søndergaard. State joining and
splitting for the symbolic execution of binaries. In International Workshop
on Runtime Verification, pages 76–92. Springer, 2009.

[Kai23] David Kaindlstorfer. Enhancing Abstraction and Symbolic Execution for
Shape Analysis of C-Programs operating on Linked Lists, 2023.

[KKBC12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.
Efficient state merging in symbolic execution. Acm Sigplan Notices, 47(6):193–
204, 2012.

[KSV10] Jörg Kreiker, Helmut Seidl, and Vesal Vojdani. Shape analysis of low-level C
with overlapping structures. In Verification, Model Checking, and Abstract
Interpretation: 11th International Conference, VMCAI 2010, Madrid, Spain,
January 17-19, 2010. Proceedings 11, pages 214–230. Springer, 2010.

[LBCR17] Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival.
Semantic-directed clumping of disjunctive abstract states. ACM SIGPLAN
Notices, 52(1):32–45, 2017.

[LC02] Woo Hyong Lee and Morris Chang. A study of dynamic memory management
in C++ programs. Computer Languages, Systems & Structures, 28(3):237–272,
2002.

83

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
https://pajda.fit.vutbr.cz/rogalew/broom
https://pajda.fit.vutbr.cz/rogalew/broom

[LGQC14] Quang Loc Le, Cristian Gherghina, Shengchao Qin, and Wei-Ngan Chin.
Shape analysis via second-order bi-abduction. In Computer Aided Verification:
26th International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26, pages
52–68. Springer, 2014.

[Min06] Antoine Miné. Field-sensitive value analysis of embedded C programs with
union types and pointer arithmetics. In Proceedings of the 2006 ACM SIG-
PLAN/SIGBED conference on Language, compilers, and tool support for
embedded systems, pages 54–63, 2006.

[MSRF04] Roman Manevich, Mooly Sagiv, Ganesan Ramalingam, and John Field.
Partially disjunctive heap abstraction. In Static Analysis: 11th International
Symposium, SAS 2004, Verona, Italy, August 26-28, 2004. Proceedings 11,
pages 265–279. Springer, 2004.

[O’H19] Peter O’Hearn. Separation logic. Communications of the ACM, 62(2):86–95,
2019.

[OP99] Peter W. O’Hearn and David J. Pym. The Logic of Bunched Implications.
Bulletin of Symbolic Logic, 5(2):215–244, 1999.

[PZ22] Jens Pagel and Florian Zuleger. Strong-separation logic. ACM Transactions
on Programming Languages and Systems (TOPLAS), 44(3):1–40, 2022.

[Rey02] John C Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science,
pages 55–74. IEEE, 2002.

[SHB16] Dominic Scheurer, Reiner Hähnle, and Richard Bubel. A general lattice
model for merging symbolic execution branches. In Formal Methods and
Software Engineering: 18th International Conference on Formal Engineering
Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016, Proceedings
18, pages 57–73. Springer, 2016.

[SRVZ23] Florian Sextl, Adam Rogalewicz, Tomáš Vojnar, and Florian Zuleger.
Sound One-Phase Shape Analysis with Biabduction. arXiv preprint
arXiv:2307.06346, 2023.

[TLDC13] Minh-Thai Trinh, Quang Loc Le, Cristina David, and Wei-Ngan Chin. Bi-
abduction with pure properties for specification inference. In Programming
Languages and Systems: 11th Asian Symposium, APLAS 2013, Melbourne,
VIC, Australia, December 9-11, 2013. Proceedings 11, pages 107–123. Springer,
2013.

[YLB+08] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook,
Dino Distefano, and Peter O’Hearn. Scalable shape analysis for systems code.

84

In International Conference on Computer Aided Verification, pages 385–398.
Springer, 2008.

85

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Setting
	Problem Statement
	State-of-the-Art
	Methodology
	Contributions

	Related work
	Broom
	Bi-Abduction
	Separation logic
	List abstraction
	Formula structure
	Low-level memory operations
	Join points

	Joining States
	Problem description
	Approaches to joining
	Joining states with heap predicates

	The Join Algorithm
	Selection of pairs to join
	Joining two formulas
	Validating output
	Entailment

	Implementation
	Considered Variations
	Joining pointers with null
	Joining list segments with null
	Abstracting on pointer + null
	Shared expressions in abstraction
	Only allowing correct joins

	Evaluation
	Benchmark suite
	Number of join points
	Runtime
	Result quality
	Notable differences

	Conclusion
	Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

